DEPARTMENT OF BIOTECHNOLOGY FEEDBACK FROM STAKEHOLDERS AND ACTION TAKEN (2016-17)

Action Taken

1) Increase in the duration of laboratory sessions

Annexure 1

Hour	1	2	3	4	5	6	7	8	9	10
Day & Time	08:30	09:00	09:55	10:50	11.45	12:35	01:45	02:40	3.35	04:30
	08:50		10:45	- 11:40	12.35	01:45	02:35	03:30	4.25	05:20
Mon	Assem bly	BBC H	MiB M	IMA K	Maths 1			IM	MiB LAB B1 IA LAB B2	/ L25
Tue		BBC H	B M	iochem lab B1 iB lab B2- L26	5		Maths I	IMA K	PCE L	
Wed						Lunc h	BIB J	BBC H	MiB M	
Thu		IMA K	Maths I	PCE L	MiB M		BIB TJ		Biochem lab B IMA B1 L28	2/
Fri		Maths TI					PCE L	BIB J	BBC H	

DEPARTMENT OF BIOSCIENCES TECHNOLOGY (2017 - 18 /ODD SEMESTER)

Class: II B.Tech (Biotech) Batch-I

(2) Inclusion of Interested method of teaching

Annexure (2)

	KARUNYA INST	ITUTE OF TECHNOLOGY	AND SCIENCES		insulation, Critical radius of insulation		
	(Declared as Deemed :	to be University under Sec. 3 (of the UGC Act 1956)	12	Convection heat transfer	Ingropera P 379-380	Chalk and Talk
Kar	Karun	ya Nagar, Coimbatore - 6	41 114	13	Natural convection	Mc Cabe and Smith 350-351	Chalk and Talk
METTAL 9 10X Counted to	BLDY ME SCHOTS be (Developed)			14	Forced Convection	Mc Cabe and Smith 376-380	Chalk and Talk
	Teaching Scheme: Lec	ture 3 hg/week Examination	n Scheme: 100 Marks	15	Convection heat transfer co- efficient	Mc Cabe and Smith 351-352	Chalk and Talk
				16	HBL, TBL, Prandtl number, Nusselt number	Mc Cabe and Smith 352-353	Chalk and Talk
	Branch: Biotechnol	ogy Semester: V	Credita: 3	17	h for Turbulent flow & Laminar flow	Ingropera P 382-383	Chalk and Talk
	Course Code: 14FP2005	5 Course Title: HEA	T AND MASS TRANSFER	18	Convection in non-circular objects & Convection in flow past immersed objects	Mc Cabe and Smith 373-376	Chalk and Talk
Cours	e Outcomes:	ching plan		19-20	Boiling & Condensation	Mc Cabe and Smith 388-390, 400-406	Chalk and Talk
n the su	ccessful completion of the course,	students will be able to;;		21	Basics of Radiation heat transfer & Types of surfaces	Mc Cabe and Smith 417-421	Chalk and Talk
CO1 Lear	n to design heat exchangers for food pro	cessing		22	Kirchhoff's Law, Stephan Boltzmann Law	Mc Cabe and Smith 423-424	Chalk and Talk
CO2 Lear	n to design cold storage for food preserv n to select suitable processing equipment	ation.		23	Radiation b/w a body and surroundings & Planck's Distribution law	Incropera P 783-784	Chalk and Talk
Consul	ing Hours: 03.00 to 4.50 p.m.	Room: BI	LH006	24, 25	Wien's Displacement law, Lambert's law, Combined Radiation and Convection Heat Transfer	Instagera P 784	Chalk and Talk
No.	Topics to be covered	used for teaching	Teaching Method	26-28	Problems	-Do-	Chalk and Talk
1	Introduction to heat transfer	Geankoplis P 235- 236	Chalk and Talk	29	Types of Heat exchanger	Incropera P706-708	Video and power po presentation
-	Conduction. Convection		Chalk and Talk	30	Overall Heat Transfer Coefficient	Ingropera P 708-711	Video and power po presentation
2	and Radiation	Incropera P 3-12		31	Shell and Tube1-1, 1-2,	Mc Cabe and Smith 441-44	Jigsaw Method
3	Fourier's Law of Heat conduction	Incropera P 68-70	Chalk and Talk	32	2-4 passes	- Mc Cabe and Smith 445	Jigsaw Method
4	Thermal Conductivity of gases, liquids and solids	Ingropera P 70-77	Chalk and Talk	33	Plate Heat Exchanger	Mc Cabe and Smith 455-457	Jigsaw Method

(3) More notes for theory class

Annexure (3)

Biosci	ences and Technology - LMS Activity - Source (C	omputer Technology Centre-KITS)	
	2017-18 Odd Semeste	er	
Course Short Name	Course Name	Teachers	Activity
 148T2055_1313_1	Pollution Control and Engineering Batch 1	Anu Jacob (1313)	3139
148T2016_1313_1	Enzyme Engineering Batch 1	Anu Jacob (1313)	917
148T2015_1313_1	Bioreactor Engineering Batch 2	Anu Jacob (1313)	455
148T2018_1634_3	Cell Biology and Immunology Batch 1	Anu Jacob (1313), Dr. Jesse Joel T. (1634)	314

(4) Inclusion of Mass transfer and reaction engineering Lab session

Annexure (4)

			Table 4	
Category	S.No	Course	Name of the Course	Credits
		Code		[L:T:P:C]
4.Professional	1	18BT2006	Biochemistry	3:1:0:4
core	2	18BT2007	Biochemistry Lab	0:0:3:1.5
	3	18BT2008	Microbiology	3:0:0:3
	4	18BT2009	Microbiology Lab	0:0:3:1.5
	5	18BT2010	Fluid Mechanics	3:1:0:4
	6	18BT2011	Fluid Mechanics & Heat transfer Lab	0:0:3:1.5
	7	18BT2012	Bioprocess Principles	3:0:0:3
	8	18BT2013	Bioprocess Lab	0:0:3:1.5
	9	18BT2014	Molecular Biology	3:0:0:3
	10	18BT2015	Genetic Engineering and Bioethics	3:0:0:3
	11	18BT2016	Molecular biology & Genetic Engineering Lab	0:0:3:1.5
	12	18BT2017	Bioprocess Engineering	3:0:0:3
	13	18BT2018	Enzyme Engineering & Technology	3:0:0:3
	14	18BT2019	Heat & Mass transfer	3:1:0:4
	15	18BT2020	Downstream Processing	3:0:0:3
	16	18BT2021	Downstream Processing Lab	0:0:3:1.5
	17	18BT2022	Immunology	3:0:0:3
	18	18BT2023	Cell biology & Immunology Lab	0:0:3:1.5
	19	18BT2024	Chemical Reaction Engineering	3:1:0:4
	20	18BT2025	Mass transfer & Chemical Reaction Engineering	0:0:3:1.5
			Lab	
	21	18BT2026	Biochemical Thermodynamics	3:1:0:4
	22	18BT2027	Basics of Bioinformatics	2:0:0:2
	23	18BT2028	Bioinformatics Lab	0:0:2:1
			Total credits	59

(5) Laboratory sessions for process equipment design

Annexure (5)

17BT2041 PROCESS EQUIPMENT DESIGN

Credit: 3:0:0

Course Objectives:

- To design safe and dependable processing facilities.
- · This course focus on plant layout and design of piping systems
- · This will provide the basic knowledge to carryout design process cost effectively.

Course Outcomes:

The students will be able to

- · Utilize principles of process equipment design, the mechanical aspects of the design
- · Design various unit operation equipments, including safety considerations
- Develop flow measurement devices
- Design safe and dependable processing facilities
- Describe the Scale up criteria of bioreactors
- Analyze the plant layout.

UNIT I - Shell and tube heat exchanger , double pipe heat exchanger , Single effect evaporator and vertical tube evaporation,

36 Biotechnology

UNIT II - Design of the following equipments as per ASME, ISI codes, drawing according to scale; monoblock and multiplayer vessels, combustion details and supporting structure.

UNIT III - Construction details and assembly drawing of distillation column; Plate and Packed absorption Towers; Design of fractional Distillation Towers.

UNIT IV - Design of venturimeter and orifice meter, Design of flow control device - Gate, Globe valves, their material of construction.

UNIT V - Design of airlift fermentor ; parts of fermenter, Ideal batch reactor design, Plant layout For Ethylalcohol and Citric acid.

Text Books.

1. Joshi, M.V, "Process Equipment Design", MacMillan, 3rd edition, 2004.

Reference Books:

- 1. Brownbell I.E., Young E.H., "Chemical Plant Design" 1985.
- Kern D.Q. "Heat Transfer". McGraw Hill, 1985.
- 3. McCabe, W.L., J.C. Smith and P. Harriott "Unit Operations of Chemical Engineering",

(6) Inclusion of application/ analytical oriented Courses

Annexure (6)

KARUNYA UNIVERSITY (Karunya Institute of Technology and Sciences) (Declared as deemed to be university under Sec.3 of the UGC Act, 1956) Karunya Nagar, Coimbatore-641 114 DEPARTMENT OF BIOSCIENCES AND TECHNOLOGY PROGRAMME -BIOTECHNOLOGY

12.04.2017

Credits

Sub: Minutes for Board of Studies Meeting of the Department of Biotechnology held on 12.04.2017- reg.

Internal Members:

L D. I basat Vannila	· Director and Chairman
I. Dr. J. Jannet Ventina	DC 931 under
2. Dr. R. S. David Paul Raj	: PC & Member
3 Dr. V.M. Berlin Grace	: Member
4 Mr P Muthusamy	: Member
5 Dr. M. Lakshmi Prabha	: Member
6 Dr RT Narendirakannan	: Member
2 De Dava kong	: Member
1. Dr. Keya issac	• Member
8. Dr. G. Gnanavel	. Hickory

- 1. Dr. M. L. StephenRaj, Head, Department of Biotechnology, MEPCO Schlenk Engineering College. Sivakasi (Academia)
- 2. Mr. K. C. Thirumoorthy, Director & CEO, M/s TRM Biotech Private Limited, Tiruchengode
- 3. Mrs. Mercy Nisha Pauline, Assistant Professor, Government College of Technology, Coimbatore (Alumni)

The Minutes of Board of Studies Meeting held on 12-04-2017 for the Department of Biotechnology is herewith enclosed for your kind perusal.

The meeting started with an opening prayer by Dr. David Paul Raj

Points Discussed:

1. The Program Educational Objectives (PEO), Program Outcome(PO) and Program Specific Objectives(PSO) were framed and discussed.

2. It is proposed to introduce the following Course components for B. Tech (Biotechnology) Programme from 2017 onwards. Revision of curriculum towards employability was discussed.

B.TECH BIOTECHNOLOGY - 2017 batch COURSE COMPONENTS Table 1

Sub, Code	Subject		No st
New Code	Value Education 1/11		2:0:0
		Subject Total	2
	Table 2		
	Sub, Code	Sub, Code Subject New Code Value Education 1/11 Table 2	Sub, Code Subject New Code Value Education 1/11 Subject Total Table 2

CI NA	Sub Code	Basic Sciences - 12 credits	Credits
31. 140.	Sub. Code	Subject	
1	17BT2001	Basics of Biochemistry	3:1:0
2	New Code	Numerical Methods	3:1:0
3	New Code	Probability and Statistics	3:1:0
128.4		Subjects Total	12

		Table 3	
Sl. No.	Sub. Code	Engineering Sciences & Technical Arts – 7 credits	Credits
Carl Star		Subject	
Ι	17BT2003	Principles of Chemical Engineering	3:0:0
2	New Code	Aptitude and Soft Skills	4:0:0
		Subjects Total	7

Table 4

SLNo	Sub, Code	Programme Core - 75 credits & a full / part semester project	
a land		Name of the Subject	Credits
1	17BT2002	Biochemistry Lab	0:0.2
2	17BT2004	Cell Biology	3:0:0
3	17BT2005	Microbiology	3:0:0
4	17BT2006	Microbiology Lab	0:0:2
5	17BT2007	Instrumental Methods of Analysis	3:0:0
6	17BT2008	Instrumental Methods of Analysis Lab	0:0:2
7	17BT2009	Basic Industrial Biotechnology	3:0:0
8	17BT2010	Metabolism and Bioenergetics	3:1:0
9	17BT2011	Bioprocess Principles	3:0:0
10	17BT2012	Bioprocess Lab	0:0:2
11	17BT2013	Fluid Mechanics for Biotechnologists	3:1:0
12	17BT2014	Fluid Mechanics and Heat Transfer Lab	0:0.2
13	17BT2015	Molecular Biology	3:0:0
14	17BT2016	Genetic Engineering and Bioethics	3:0:0
15	17BT2017	Molecular Biology and Genetic Engineering Lab	0.0.2
16	17BT2018	Bioorganic Principles	3:0:0
17	17BT2019	Bioreactor Engineering	3:0:0
18	17BT2020	Enzyme Engineering	3:0:0
19	17BT2021	Immunology	3:0:0
20	17BT2022	Cell Biology and Immunology Lab	0:0:2
21	17BT2023	Chemical Reaction Engineering	3:0:0
22	17BT2024	Downstream Processing	3:0:0
23	17BT2025	Downstream Processing Lab	0:0:2
24	17BT2026	Mechanical Operations	3:0:0
25	17BT2027	Chemical and Biothermodynamics	3:0:0
26	17BT2028	Heat and Mass Transfer Operations	3:0:0
27	New Code	Analytical Bioinformatics	3:0:0
-		Total	75
28	17812998	Part/ Full Semester Project	0:0:12

1/1	512999		0:0:18
		Total	87/93
	-	Table 5	
Code No.		Name of the Subject	Cradit
17BT2029	Plant phy	siology and Crop Improvement	3:0:0
17BT2030	Plant Gen	etic Engneering	3:0:0
17BT2031	Agricultu	re and Biomass Energy	3:0:0
17BT2032	Horticult	aral Crop Production, Management and Green House Technology	3:0:0
17BT2033	Developr	nental Biology	3:0:0
17BT2034	Human C	Genetics and Genomics	3:0:0
17BT2035	Vaccine	Biotechnology	3:0:0
17BT2036	Animal F	Biotechnology and Cell Culture Techniques	3:0:0
17BT2037	Cancer B	liology	3:0:0
17BT2038	Biopharr	naceutical Technology	3:0:0
17BT2039	Biochem	ical Engineering	3:0:0
17BT2040	Metaboli	ic Engineering	3:0:0
17BT2041	Process	Equipment Design	3:0:0
17BT2042	Pilot pla	nt & Scale Up practice	3:0:0
17BT2043	Industria	Il Safety & Hezard Analysis	3:0:0
17BT2044	Industria	il Effluent Treatment	3:0:0
17BT2045	Pollution	n Control and Engineering	3:0:0
17BT2046	Mechan	ical Operation Lab	0:0:2
17BT2047	Plant an	d Animal Tissue Culture Lab	0:0:2
17BT2048	Bioproc	ess control and Instrumentation	3:0:0
New Code	Clinical	Database management	3:0:0
New Code	Clinical	database management Lab	0:0:2
New Code	Biologia	cal Big Data Analysis	3:0:0
New Code	Python	Programming	3:0:0
		Subjects offered to other Departments	
17BT2049	Applied	I Medical Biochemistry	3:0:
17BT2050	Medica	Biochemistry Lab	0:0:
17BT2051	Human	Physiology and Anatomy	3:0:
17BT2052	Biomat	erials and Artificial Organs	3:02
17BT2053	Occupa	tional Safety Management	3:0:
17BT2054	Medica	Waste Treatment	3:0
17BT2055	Cell Bi	ology and Immunology	3:0
17BT2056	Tissue	Engineering	3:0
17BT2057	Technic	ques in Pathology and Microbiology	3:0
17BT2058	Microb	iclogy and immunology	0.6
New Code	Mini Pr	oject	0:0
New Code	Implant	Training	0:0

	List of University Electives 6 Credite	LAND STREET
Code No.	Name of the Subject	
17BT2059	Analytical Instrumentation	Credits
17BT2060	Biology in Everyday Life	5.0:0
7BT2061	Biotechnology and Environment	3:0:0
7BT2062	Entrepreneration in Diale in the internet	3:0:0
17072002	Putterieurship in Bioengineering	3:0:0
17012063	Pollution Control	3:0:0

3. As the following chemical engineering subjects require the aspects of biotechnology, the CDC members insisted that the syllabus of the following subjects offered for Biotechnology students to be framed and handled only by biotech faculties with chemical engineering background

- 14ME2014 Engineering Thermodynamics (3:0:0)
- 14CE2003 Mechanics of Fluids (3:1:0)

Hence, it is proposed to replace 14CE2003 Mechanics of Fluids (3:1:0) with 17BT2013 Fluid Mechanics for Biotechnologists (3:1:0) and 14ME2014 Engineering Thermodynamics (3:0:0) with 17BT2027 Chemical and Biothermodynamics (3:0:0) in core list of B. Tech (Biotechnology) 2016 Batch.

B.TECH BIOTECHNOLOGY – 2016 batch COURSE COMPONENTS Table 4

SLNo	Sub. Code	Programme Core – 75 credits & a full / part semester project	
		Name of the Subject	Credits
1	14BT2002	Biochemistry Lab	0:0:2
2	14BT2004	Cell Biology	3:0:0
3	14BT2005	Microbiology	3:0:0
4	14BT2006	Microbiology Lab	0:0:2
5	14BT2007	Basic Industrial Biotechnology	3:0:0
6	14BT2008	Metabolism and Bioenergetics	3:1:0
7	14BT2009	Bioprocess Principles	3:0:0
8	14BT2010	Bioprocess Lab	0:0:2
9	14BT201	Molecular Biology	3:0:0
10	14BT2012	Genetic Engineering and Bioethics	3:0:0
11	14BT2013	Molecular Biology and Genetic Engineering Lab	0:0:2
12	14BT2014	Bioorganic Principles	3:0:0
13	14BT2015	Bioreactor Ergineering	3:0:0
14	14BT2016	Enzyme Engineering	3:0:0
15	14BT2017	Immunology	3:0:0
16	14BT2018	Cell Biology and Immunology Lab	0:0:2

3:0:0 3:0:0 0:0:2 3:0:0 3:0:0 3:0:0
3:0:0 0:0:2 3:0:0 3:0:0 3:0:0
0:0:2 3:0:0 3:0:0 3:0:0
3;0;0 3;0;0 3;0;0
3:0:0
3.0.0
COLONIA MANANA
3:1:0
3:0:0
0:0:2
3:0:0
0.0.2
75
0.0.20
05

4. It is proposed to offer a Diploma in Biotechnology skill enhancement with the following domains

Domain-1: Clinical Database Management
 Domain-2: Fermentation Technology

The credit distribution for the diploma is proposed as follows:

Value Education = 2 credits Soft Skills = 2 credits 3 Theory x 3 credits = 9 credits 2 Lab x 4 credit = 8 credits Half Semester Project = 12 credits Industry Internship = 8 credits

Total = 41 credits

 It is proposed to pass the following online MOOC SWAYAM courses in the B. Tech Biotechnology Curriculum from 2017 onwards

i. Plant Science (3 Weeks)

- ii. Genetics (4 weeks)
- iii. Cell Biology (3 weeks)
- iv. Developmental Biology (4 weeks)
- v. Biochemistry (10 weeks)
- vi. Bioreactors (5 weeks)
- vii. Engineering Thermodynamics (9 weeks)
- viii. Bioenergy (5 weeks)
- ix. Mechanical Operations (4 weeks)
- x. Stress Management (4 weeks)

The meeting came to a close with a prayer offered by Dr. Reya Issac

IN Dr. V. M. Berlin Grace (Internal Member)

INA Mr. P. Muthusamy (Internal Member)

Dr. RT. Narendirakannan (Internal Member) Dr. M. Lakshmi Prabha (Internal Member)

ectinentity

Mr. K. C. Thirumoorthi (External Member)

Dr. M. L. Stephen Raj (External Member)

Dr. Reya Issac (Curriculum coordinator)

Dr. G. Gnanavel

(Internal Member)

Mrs. J. Mercy Nisha Pauline (Alumni)

Dr. J. Jannet Vennila (HOD, BST and Chairman)

Dr. R.S. David Paul Raj (Internal Member/PC)

PC rel.

(7) Increase credit for advanced process equipment design

Annexure (7)

18BT3006	Advanced Process Equipment Design and Drawing Lab	L	Т	Р	С	
		0	0	4	2	
CO- request: Process equipment Design						
Course Objectives:						

- 1. To design safe and dependable processing facilities.
- 2. This course focuses on plant layout and selection.
- 3. This will provide the basic knowledge to carry out process equipment design and cost effect.

Biotechnology

[Date]

69

Course Outcome :

After completing the course the students will be

- 1. On completion of this lab subject students should be able to understanding the symbols of process equipments.
- 2. Understand the procedures for construction of geometric figures
- 3. Students know very well about plant layout and safety of process equipments
- Students should be able to understand the mass and energy balance calculations
 Students will have completed detailed design of unit operations
- 6. Students should be able to understanding the drawing of process equipments.

List of Equipments:

- 1. Basics of various unit operation symbols
- Plant layout
 Engineering Letters, Lines and numbers.
- 4. Shell and tube heat exchanger
- 5. Single effect evaporator
- 6. Batch reactor
- Air lift Fermentor
 Fractional distillation column
- 9. Rotary drum filter
- 10. Absorption column
- 11. Gate Valves
- 12. Venturi meter

References:

- 1. Unit operation by McCabe Smith (Mc Cabe Smith)
- 2. Heat Transfer by Kern (Kern)

Action Taken Report

Feedback	Action taken				
Students Feedback					
Increase in the duration	2 h duration Laboratories were increased to 3 hrs in 2017.				
of laboratory sessions	(Annexure 1)				
Inclusion of Interested	Faculty modified method of teaching, learning process and included				
method of teaching	methods such as Jigzaw method. Teaching plan was collected prior to				
	the semester.				
	(Annexure 2)				
More notes for theory	Faculties uploads course material through online platform such as				
class	LMS/ Courses.karunya.edu				
	(Annexure 3)				
Faculty Feedback					
Inclusion of Mass	Introduced Mass transfer and reaction engineering Lab in 2018				
transfer and reaction	curriculum				
engineering Lab session	(Annexure 4)				
Laboratory sessions for	In theory (17BT2041), design calculations and drawing were				
process equipment	integrated				
design	(Annexure 5)				
Inclusion of	New Course in Fluid Mechanics for Biotechnologists (17BT2013),				
application/ analytical	Heat and Mass Transfer Operations (17BT2028), Chemical and Bio-				
oriented Courses	thermodynamics, Plant Genetic Engineering, Agriculture And				
	Biomass Energy, Plant and Animal Tissue Culture Lab, Bioprocess				
	Control and Instrumentation, Analytical Instrumentation were				
	introduced in 2017				
T 11.0	(Annexure 6)				
Increase credit for	Introduced Advanced Process Equipment Design and Drawing Lab				
advanced process	with 4 credit in 2018				
equipment design	(Annexure 7)				
Alumni Feedback					
Need to imptove skills	2 h duration Laboratories were increased to 3 hrs in 2017.				
in reagent preparation/	(Annexure 1)				
instrument handling/					
tissue culture skills					