<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Name of the Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17FP2001</td>
<td>Principles of Food Process Engineering</td>
<td>3:0:0</td>
</tr>
<tr>
<td>2</td>
<td>17FP2002</td>
<td>Applied Thermodynamics for Food Engineers</td>
<td>3:1:0</td>
</tr>
<tr>
<td>3</td>
<td>17FP2003</td>
<td>Food Chemistry</td>
<td>3:0:0</td>
</tr>
<tr>
<td>4</td>
<td>17FP2004</td>
<td>Fluid Mechanics for Food Engineers</td>
<td>3:0:0</td>
</tr>
<tr>
<td>5</td>
<td>17FP2005</td>
<td>Food Microbiology</td>
<td>3:0:0</td>
</tr>
<tr>
<td>6</td>
<td>17FP2006</td>
<td>Food Microbiology Lab</td>
<td>0:0:2</td>
</tr>
<tr>
<td>7</td>
<td>17FP2007</td>
<td>Fluid Mechanics and Heat Transfer Lab</td>
<td>0:0:2</td>
</tr>
<tr>
<td>8</td>
<td>17FP2008</td>
<td>Food Analysis Lab – I</td>
<td>0:0:2</td>
</tr>
<tr>
<td>9</td>
<td>17FP2009</td>
<td>Food Biochemistry and Nutrition</td>
<td>3:0:0</td>
</tr>
<tr>
<td>10</td>
<td>17FP2010</td>
<td>Heat and Mass Transfer</td>
<td>3:0:0</td>
</tr>
<tr>
<td>11</td>
<td>17FP2011</td>
<td>Dairy Engineering and Technology</td>
<td>3:0:0</td>
</tr>
<tr>
<td>12</td>
<td>17FP2012</td>
<td>Unit Operations in Food Process Engineering - I</td>
<td>3:0:0</td>
</tr>
<tr>
<td>13</td>
<td>17FP2013</td>
<td>Fruit and Vegetable Processing Technology</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14</td>
<td>17FP2014</td>
<td>Unit Operations in Food Process Engineering and Grain Processing Lab</td>
<td>0:0:2</td>
</tr>
<tr>
<td>15</td>
<td>17FP2015</td>
<td>Food Biochemistry Lab</td>
<td>3:0:0</td>
</tr>
<tr>
<td>16</td>
<td>17FP2016</td>
<td>Unit Operations in Food Process Engineering - II</td>
<td>3:0:0</td>
</tr>
<tr>
<td>17</td>
<td>17FP2017</td>
<td>Refrigeration, Air conditioning and Cold Storage Construction</td>
<td>3:0:0</td>
</tr>
<tr>
<td>18</td>
<td>17FP2018</td>
<td>Mechanical Systems for Food Processing</td>
<td>3:0:0</td>
</tr>
<tr>
<td>19</td>
<td>17FP2019</td>
<td>Cereals and Pulses Technology</td>
<td>3:0:0</td>
</tr>
<tr>
<td>20</td>
<td>17FP2020</td>
<td>Bakery, Beverages and Confectionery Technology</td>
<td>3:0:0</td>
</tr>
<tr>
<td>21</td>
<td>17FP2021</td>
<td>Food Safety Regulations</td>
<td>3:0:0</td>
</tr>
<tr>
<td>22</td>
<td>17FP2022</td>
<td>Food Enzymology Lab</td>
<td>0:0:2</td>
</tr>
<tr>
<td>23</td>
<td>17FP2023</td>
<td>Food Product Technology Lab - I</td>
<td>0:0:2</td>
</tr>
<tr>
<td>24</td>
<td>17FP2024</td>
<td>Engineering Properties of Food Materials</td>
<td>3:0:0</td>
</tr>
<tr>
<td>25</td>
<td>17FP2025</td>
<td>Engineering Properties of Food Materials Lab</td>
<td>0:0:2</td>
</tr>
<tr>
<td>26</td>
<td>17FP2026</td>
<td>Food Engineering and Packaging Lab</td>
<td>0:0:2</td>
</tr>
<tr>
<td>27</td>
<td>17FP2027</td>
<td>Food Process Equipment Design</td>
<td>3:0:0</td>
</tr>
<tr>
<td>28</td>
<td>17FP2028</td>
<td>Food Analysis Lab – II</td>
<td>0:0:2</td>
</tr>
<tr>
<td>29</td>
<td>17FP2029</td>
<td>Computer Aided Food Process Equipment Design Lab</td>
<td>0:0:2</td>
</tr>
<tr>
<td>30</td>
<td>17FP2030</td>
<td>Food Additives</td>
<td>3:0:0</td>
</tr>
<tr>
<td>31</td>
<td>17FP2031</td>
<td>Plantation Products and Spices Technology</td>
<td>3:0:0</td>
</tr>
<tr>
<td>32</td>
<td>17FP2032</td>
<td>Fat and Oil Processing Technology</td>
<td>3:0:0</td>
</tr>
<tr>
<td>33</td>
<td>17FP2033</td>
<td>Technology of Meat, Poultry and Fish</td>
<td>3:0:0</td>
</tr>
<tr>
<td>34</td>
<td>17FP2034</td>
<td>Drying Technology</td>
<td>3:0:0</td>
</tr>
<tr>
<td>35</td>
<td>17FP2035</td>
<td>Food Packaging Technology</td>
<td>3:0:0</td>
</tr>
<tr>
<td>36</td>
<td>17FP2036</td>
<td>Storage Engineering</td>
<td>3:0:0</td>
</tr>
<tr>
<td>37</td>
<td>17FP2037</td>
<td>Process Economics and Plant Layout Design</td>
<td>3:0:0</td>
</tr>
<tr>
<td>38</td>
<td>17FP2038</td>
<td>Non Thermal Techniques of Food Preservation</td>
<td>3:0:0</td>
</tr>
<tr>
<td>39</td>
<td>17FP2039</td>
<td>Functional Foods and Nutraceuticals</td>
<td>3:0:0</td>
</tr>
<tr>
<td>40</td>
<td>17FP2040</td>
<td>Food Additives Lab</td>
<td>0:0:2</td>
</tr>
<tr>
<td>41</td>
<td>17FP2041</td>
<td>Food Product Technology Lab – II</td>
<td>0:0:2</td>
</tr>
<tr>
<td>42</td>
<td>17FP2042</td>
<td>Principles of Food Science and Nutrition</td>
<td>3:0:0</td>
</tr>
<tr>
<td>43</td>
<td>17FP2043</td>
<td>Processing of Food Commodities</td>
<td>3:0:0</td>
</tr>
<tr>
<td>44</td>
<td>17FP2044</td>
<td>Technology of Packaging</td>
<td>3:0:0</td>
</tr>
<tr>
<td>45</td>
<td>17FP2045</td>
<td>Nutrition and Food Science</td>
<td>3:0:0</td>
</tr>
</tbody>
</table>

17FP2001 PRINCIPLES OF FOOD PROCESS ENGINEERING

Credits: 3:0:0

Course Objectives:
- To understand the basic principles involved in food process engineering.
- To apply the principles in food processing.
- To perform calculations for basic operations in food processing.

Course Outcomes:
- To enumerate the units and dimensions of various physical quantities.
- To express the laws and theory of gases and vapours.
- To describe the types and properties of fluid flow.
• To calculate the material balance in food processing units.
• To appraise the performance of processing units
• To validate the energy balance involved in food processing operations.

Unit I - DIMENSIONS AND UNIT: Fundamental -derived units. Definitions of some basic physical quantities – Force, momentum, pressure, work and energy, power, heat and enthalpy. Dimensional analysis. Mole – atomic molar mass. Moisture content.– water activity

Unit III - FLOW OF FLUIDS: Fluids-Properties, vapor pressure, surface tension, capillary effect, concept of viscosity-types of fluid. Bernoulli equation-fluid flow-laminar; pressure drop in pipes, valves and bends, Orifice meter, Venturi meter, Rotameter, Pitot tube – working principles.

Text Books

Reference Book

17FP2002 APPLIED THERMODYNAMICS FOR FOOD ENGINEERS

Credits: 3:1:0

Course Objectives
• To understand the importance of thermodynamics in food system.
• To apply the concept of statistical thermodynamics for various food system
• To develop an efficient system using thermodynamic principle

Course Outcomes
• To identify the thermodynamic variables that will affect the food processing
• To estimate the effect of various thermodynamic properties on food system
• To solve the problems related to food processing using thermodynamic principles
• To model food system based on thermodynamic properties
• To develop an efficient food processing method
• To predict the bottleneck using the thermodynamic principles

Unit I - FUNDAMENTAL CONCEPTS AND CALCULATION OF THERMODYNAMIC QUANTITIES: Thermodynamic terms, variables, processes and states. First and zeroth law of thermodynamics. State and path function. \(C_p \) and \(C_v \). Joule Thomson porous plug experiment. Calculation of thermodynamic quantities - Isothermal expansion, free expansion and adiabatic reversible process.

Unit II - FIRST AND SECOND LAW OF THERMODYNAMICS AND ITS APPLICATION: Steady flow energy equation and its application to steam generator, condenser, nozzles and air compressors. Second law of thermodynamics and its application to refrigerator, heat engine and heat pump. Concept of entropy and calculation of entropy changes.

Text Books

Reference Books

17FP2003 FOOD CHEMISTRY

Credits : 3:0:0

Course Objectives :
- To understand the chemistry of food constituents
- To apply food molecules interaction in developing technologies / processes
- To develop skills for experimenting with food systems and to test various approaches for manipulating the chemical and/or functional properties of foods.

Course Outcomes :
- To name and describe the general chemical structures of the major components of foods (water, proteins, carbohydrates, and lipids) and selected minor components (vitamins and minerals).
- To relate the chemical composition of foods to their functional properties
- To understand, plan, perform and analyse a range of chemical investigations with an emphasis on food analysis
- To give a molecular rationalization for the observed physical properties and reactivity of major food components.
- To predict how changes in overall composition are likely to change the reactivity of individual food components.
- To evaluation and to determine approaches that may be used to control the reactivity of those food components that are likely to impact the overall quality of finished products.

Unit I - WATER AND ICE :
Importance of water in foods - Structure of water & ice - concept of bound & free water. Sorption phenomena and sorption isotherms with example. Dispersed systems - gels & emulsion.

Unit II - CHEMISTRY OF CARBOHYDRATES :
Nomenclature, classification & structure of carbohydrates, chemical reactions of carbohydrates, physical & chemical properties of sugars, chemistry of polysaccharides, properties and preparation of pectic substances, gums, starch and its hydrolytic products, cellulose, cyclodextrins maltodextrins, HFCS.

Unit III - CHEMISTRY OF LIPIDS :

Unit IV - CHEMISTRY OF PROTEINS :

Unit V - CHEMISTRY OF VITAMINS AND NATURAL COLOURANTS :

Text Books

Reference Books

17FP2004 FLUID MECHANICS FOR FOOD ENGINEERS

Credits: 3:0:0

Course Objectives:
- To have an in depth knowledge of fluid mechanics.
- To apply fluid mechanics to the area of food engineering.
- To perform basic design calculations for fluid flow in pipes

Course Outcomes:
- To recognize the various properties of fluids.
- To express the units of different properties of fluids.
- To describe the pressure and its measurement.
- To calculate the forces acting on bodies submerged in different positions in liquids.
- To identify the type of flow of fluid.
- To solve problems on fluid flow measurement.

Unit I - PROPERTIES OF FLUIDS : Introduction- Units and Dimensions – Properties of fluids-Density – Specific weight - Specific Volume- Specific gravity- Viscosity-Thermodynamic properties-Compressibility and Bulk modulus- Surface tension and Capillarity -Vapour pressure and cavitation.

Unit II - PRESSURE AND ITS MEASUREMENT : Fluid pressure at a point- Pascal’s law- Pressure variation in a fluid at rest-Absolute, Gauge, Atmospheric and vacuum pressures- Measurement of pressure-Simple manometers-Differential manometers.

Unit III - FLUID STATICS : Hydro static forces on surfaces- Total pressure and centre of pressure- Vertical plane surface submerged in liquid- Horizontal plane surface submerged in liquid- Inclined plane surface submerged in liquid- curved surface submerged in liquid.

Unit IV - BASIC CONCEPTS OF FLUID FLOW AND MEASUREMENT : Kinematics of flow-Types of fluid flow-Rate of flow-continuity equation- continuity equation in three dimensions- velocity and acceleration-velocity potential function and stream function- Dynamics of Fluid flow- Equations of motion- Bernoulli’s equation- Practical applications of Bernoulli’s equation – Venturiometer- Orifice meter- Pitot tube.

Text Books

Reference Books

17FP2005 FOOD MICROBIOLOGY

Credits : 3:0:0

Course Objectives:
- To understand the microorganisms associated with foods and isolation methods of microorganisms from foods.
- To know the methods of preservation of foods.
- To learn the fermentation process and microorganisms involved in the production of fermented foods.

Course Outcomes:
- To name and describe the beneficial and spoilage microorganisms associated with food.
- To understand the growth and methods of isolation of microorganisms from food.
• To enumerate the spoilage factors and the conventional methods of preservation fermentation process and fermented food products.
• To evaluate the role of microorganisms in various foods and water.
• To predict the causative agent and pathogenesis of disease causing foodborne pathogens and their toxins.

Unit I - INTRODUCTION, SCREENING AND ISOLATION OF MICROORGANISMS: Basic of Microbial existence - Micro organisms associated with foods: Bacteria, Molds, Yeast and their importance – Nutritional requirements of bacteria- Factors affecting the growth of bacteria –Antimicrobial barriers and constituent- Spoilage and contamination in various food commodities- General Microbiological Methods of enumeration and isolation of bacteria and fungi.-Identification of bacteria and fungi by staining methods.

Unit III - MICROBIOLOGY OF FERMENTED FOODS: Traditional vegetable fermentation –Sauerkraut - Lactic acid, citric acid, and Acetic acid fermentation - Alcohol production – Beer, wine - Fermentation of oriental food products.

Unit IV - MICROBIOLOGY OF WATER AND FOOD COMMODITIES: Microbiology of water and their importance in processing of foods in industries. MPN of coliforms, Membrane filtration Technique. Microbiology of milk –Phosphatase test. Hetero and homo fermentative Lactic acid bacteria – Yogurt and Cheese fermenting organisms –Aflatoxin producing organisms and their importance in foods.

Unit V - FOOD BORNE PATHOGENS: Food Poisoning and intoxication – food borne diseases – Symptoms of diseases caused by Bacillus spp., Clostridium botulinum, Escherichia coli, Salmonella spp, Staphylococcus aureus, Shigella spp., Hepatatis, Gastroenteritis viruses, Entamoeba histolytica.

Text Book

Reference Books

17FP2006 FOOD MICROBIOLOGY LAB

Credits : 0:0:2

Course Objectives:
• To understand the working principle of microscopes and sterilization techniques.
• To know the preparation of media for the cultivation of microorganisms.
• To identify the isolated strains using staining techniques and biochemical tests.

Course Outcomes:
• Use aseptic technique to properly handle microorganisms to avoid contamination.
• Understand and apply the knowledge to handle microscopes to observe stained microorganisms.
• Enumerate the microorganisms to check the quality characteristics of food.
• Isolate the pure culture from mixed population found in contaminated foods.
• Identify the microorganisms using staining techniques.
• Assess the quality of raw milk by methylene blue reduction test.

List of Experiments
1. Microscopy
2. Sterilization and Disinfection
3. Preparation of culture media.
5. Staining techniques - Monochrome staining
6. Gram staining
7. Negative staining,
8. Lacto phenol cotton blue staining for fungi.
9. Hanging drop preparation to observe motility of bacteria
10. Enumeration of microorganisms from water/milk
11. Enumeration of microorganisms from any contaminated food.
12. MPN Test for coliforms.

17FP2007 FLUID MECHANICS AND HEAT TRANSFER LAB

Credits : 0:0:2

Course Objective:
- To provide extensive knowledge on various flow measuring equipments involved in food industries.
- To equip the students to operate and measurement of the heat transfer equipments.

Course Outcomes:
The students will be able to
- Understand the importance of fluid flow in industrial applications.
- Describe the use of flow measuring devices.
- Demonstrate the loss of energy due to friction in pipes.
- Calculate the losses of energy due to fittings in pipe flow systems.
- Evaluate the required length of pipes for fluid flow.
- Demonstrate the heat transfer equipments and their performance.

List of Experiments
1. Determination of coefficient of discharge of Venturi meter
2. Determination of coefficient of discharge of Orifice meter
3. Calibration of Rotameter
4. Determination of pipe friction and pressure drop due to sudden contraction and expansion during fluid flow
5. Determination of friction loss and pressure drop in Helical coil
6. Determination of Equivalent Length of pipe fittings during fluid flow
7. Determination of pressure drop in annular pipes
8. Pressure drop across Fluidized bed columns
9. Heat transfer studies in a tubular heat exchanger (Parallel and counter flow)
10. Heat transfer studies in a plate heat exchanger (Parallel and counter flow)
11. Heat transfer studies of a shell and tube heat exchanger
12. Heat transfer through composite walls

17FP2008 FOOD ANALYSIS LAB - I

Credits : 0:0:2

Course Objectives:
- Demonstrate an ability to assess the most appropriate analytical procedure required for a particular food analysis problem.
- Demonstrate practical knowledge of selected food analysis techniques.

Course outcomes:
Learners who successfully complete this course will be able to:
- Gain knowledge in the terminology used in food analysis
- Understand how food analysis fits into the food industry.
- Learn relevant procedures and equipment
- Gain experience with proximate analysis of foods
- Familiar with precision and accuracy through experiences with components of analysis and reporting results.
- Demonstrate oral and written communication skills to effectively communicate scientific ideas related with food analysis

List of Experiments
1. Estimation of Reducing sugars by Willstatter’ Iodometric Titration
2. Estimation of Reducing sugars by Lane and Eynon’s method
3. Estimation of Total sugars by Lane and Eynon’s method
4. Estimation of Free Fatty Acids in Fats and Oils
5. Saponification Value of Fats and Oils
6. Peroxide Value of Fats and oils
7. Iodine Value of Fats and Oils
8. Estimation of α – Amino Nitrogen by Sorenson’s Formol Titration
9. Estimation of Nitrogen by Kjeldhal’s Method
10. Estimation of Vitamin C
11. Estimation of iron
12. Estimation of Calcium
Course Objectives:
- To understand about metabolic pathways and nutrition
- To apply knowledge on the legal aspects of formulating and labelling functional foods and dietary supplements.
- To develop a food product of high nutritive value

Course Outcomes:
- To describe the structure of ATP and identify the major class of macromolecules to which ATP belongs.
- To list the stages in the catabolism of food molecules and describe what occurs during each stage.
- To describe the biochemistry process, basic concept of human nutrition and the relationship of the consumption of foods to nutritional status and health
- To evaluate the biological functions of foods for health in addition to nutritional values
- To evaluate the potential for adverse events related to dietary supplements
- To apply their knowledge in food biochemistry and nutrition in designing new range of products with improved nutritional characteristics (Nutraceuticals and functional foods).

Unit I - METABOLISM OF CARBOHYDRATES:
Electron transport chain – glycolysis (EMP) pathway, TCA cycle, gluconeogenesis, Pentose phosphate shunt, interconnection of pathways, Metabolic regulation, Bioenergetics: Respiratory chain ATP cycle, energy rich compounds

Unit II - METABOLISM OF FATTY ACIDS AND PROTEINS:
Biosynthesis and degradation of fatty acids and cholesterol - Biosynthesis and degradation of amino acids (one example each for sulphur containing, aliphatic, aromatic, heterocyclic, basic and acidic amino acids), peptides and proteins; Biosynthesis and degradation of purines, pyrimidines and nucleic acids, urea cycle.

Unit III - CONCEPTS OF NUTRITION:

Unit IV - NUTRITIONAL DISORDERS:
Inborn errors of carbohydrate, protein and fat metabolisms - Nutrition and disorders associated with organs such as liver and kidney - Naturally occurring anti-nutritional factors – Cyanogens, lectins, enzyme inhibitors, phytoalexins, phytates.

Unit V - SPECIALIZED NUTRITION:

Text Books

Reference Books
17FP2010 HEAT AND MASS TRANSFER

Credits: 3:0:0

Course Objectives:
- To enable the student to basic study of the phenomena of heat and mass transfer, to develop methodologies for solving food engineering problems
- To understand the information concerning the performance and design of Heat exchangers
- To develop processes with better heat efficiency and economics

Course Outcomes:
- To understand the basic laws of heat transfer and account for the consequence of heat transfer in thermal analyses of engineering systems.
- To analyze problems involving steady state heat conduction in simple geometries.
- To evaluate heat transfer coefficients for natural convection.
- To analyze heat exchanger performance by using the method of log mean temperature difference.
- To analyze heat exchanger performance by using the method of heat exchanger effectiveness.
- To understand the influence of radiation in food processing operations.
- To understand basics of diffusion mass transfer and its application in food processing.

Unit II - HEAT TRANSFER – CONVECTION: Convection heat transfer – forced and natural; Evaluation of convection heat transfer coefficient, Dimensionless numbers- Forced convection- Heat Transfer Coefficient for Laminar flow inside a tube -heat transfer coefficient for turbulent flow inside a pipe. – Heat Transfer outside various Geometries in Forced Convection – Flow parallel to flat plate - Natural convection from vertical planes and cylinders –boiling and condensation-mechanisms

Unit III - HEAT TRANSFER – RADIATION: Basics of Radiation heat transfer- Types of surfaces – Kirchhoff’s Law-radiation from a body and emissivity (Stephan Boltzmann Law) to a small object from surroundings –Planck’s Distribution law-Wein’s Displacement law- combined Radiation and Convection Heat Transfer.

Text Book

Reference Books

Credits: 3:0:0

17FP2011 DAIRY ENGINEERING AND TECHNOLOGY

Course Objectives:
- To understand about milk, milk processing methodologies
- To provide knowledge about the milk processing equipments
- To provide technical know-how about the production of milk products (ice creams, fermented milk products)

Course Outcomes:
- To gain knowledge on milk source and composition
- To understand the various milk processing methods.
- To learn the milk processing equipments.
- To develop an understanding on milk packaging machines

Food Processing and Engineering
• To demonstrate hands-on skills in manufacturing selected dairy products in a pilot plant setting
• To evaluate the safety and quality factors that determine the acceptability of the dairy products by consumers.

Text Books

Reference Books

17FP2012 UNIT OPERATIONS IN FOOD PROCESS ENGINEERING - I

Credits: 3:0:0

Course Objectives:
• To know the various types of equipments used in the food industry.
• To learn the operation and utilization of equipments involved.
• To choose suitable techniques for the food processing operation.

Course Outcomes:
• To define the various unit operations in food processing.
• To compute the moisture content of food materials.
• To describe and demonstrate the various process equipments.
• To evaluate the different operations in food processing.
• To estimate the energy requirement for the different unit operations.
• To develop unit operation system for food processing.

Text Books

Reference Book

Credits: 3:0:0

Course Objectives:
- To enable the students to understand the processing of fruits and vegetables
- To impart technical knowledge of about how to develop products and preservation
- To understand the methods of dehydration

Course Outcomes:
- To understand the production status and post harvest handling methods of fruits and vegetables
- To learn the methods of processing and preservation of freshly harvested and cut fruits and vegetables.
- To enumerate the processing and preservation of fruits and vegetables by heat treatment.
- To illustrate the production and preservation methods of fruit juices.
- To understand the dehydration methods and design of driers used for drying fruit and vegetables.
- To describe the aseptic technology for product preservation.

Unit I - INTRODUCTION: Production of Fruits and vegetables in India. Cause for heavy losses, Composition of each of the major fruits and vegetables produced in the country- Spoilage factors, Post harvest field operations, Preservation treatments for freshly harvested fruits and vegetables, Packaging of whole fruits and vegetables for internal and export markets. Processing and packaging of cut fruits and vegetables.

Unit II - PRESERVATION OF FRUITS AND VEGETABLES: Canning operations of fruits and Vegetables- Different filling, closing and sterilization operations - Blanching operations - Batch and Continuous Blanching. Concept of hurdle technology as applied to fruit and vegetable preservation. Minimal processing. Bottled Products: Preparation of products like Jams, Jellies, Marmalades, Pickles, Puree, Ketchup, Sauce, and Squashes etc - FSSAI specifications.

Unit V - ASEPTIC PROCESSING: Aseptic processing and Bulk packing of Fruit juice concentrates. Aseptic heat exchangers for sterilizing and concentrating the product. Aseptic fillers. Tetra pack for small quantities, Dole system and Scholle system for bulk storage in Bag and Boxes and Bag & Drums. Storage of Aseptically packed products.

Text Book
Reference Books

17FP2014 UNIT OPERATIONS IN FOOD PROCESS ENGINEERING AND GRAIN PROCESSING LABORATORY

Credits : 0:0:2

Course Objectives:
- To know the various types of equipments used in the food industry.
- To learn the operation and utilization of equipments involved.
- To choose suitable techniques for the food processing operation.

Course Outcomes:
- To study the various unit operations in food processing.
- To compute the moisture content and drying characteristics of food materials.
- To describe and demonstrate the milling equipments.
- To estimate the energy requirement for the grain milling operations.
- To estimate the mixing properties of flours and grains.
- To evaluate the performance of grain separators and rice mill.

List of Experiments
1. Studies on drying characteristics of vegetables using Cross flow dryer
2. Studies on drying characteristics of vegetables using Through flow dryer
3. Studies on drying characteristics of vegetables using Vibrofluidizer
4. Studies on size reduction of grains using multi mill
5. Studies on size reduction of grains using Disc/Pin mill
6. Studies on mixing properties using Ribbon mixer
7. Studies on mixing properties using Sigma mixer
8. Experiment on Dewatering Centrifuge
9. Studies on cleaning efficiency of specific gravity separator for grains
10. Experiment on milling efficiency using Rubber Roll Sheller
11. Experiment on Plate type pasteurizer
12. Experiment on oil extraction using oil expeller

17FP2015 FOOD BIOCHEMISTRY LAB

Credits : 0:0:2

Course Objectives:
- To gain knowledge of practices for proper literature reviews and evaluation of appropriate methods for analysis.
- To understand proper use of methods of analysis
- To interpret various methodologies for analysis of components in foods.

Course outcomes:
Learners who successfully complete this course will be able to:
- Demonstrate the presence of protein, lipid, carbohydrate and water in food using chemical methods
- Describe various separation and quantification techniques frequently used for food analysis.
- Evaluate proper selection and application of appropriate methods of analysis.
- Aware of how analytical techniques may be used determine food composition and quality
- Work with other students to successfully complete lab experiment
- Apply their knowledge in food biochemistry and nutrition in designing new range of products with improved nutritional characteristics

List of Experiments
1. Estimation of sugars by DNS method
2. Estimation of crude fibre
3. Estimation of proteins by the Biuret method
4. Estimation of total free amino acid
5. Estimation of proteins by Lowry’s method
6. Estimation of proteins by dye-binding method
7. Estimation of thiamine
8. Estimation of ascorbic acid
9. Estimation of riboflavin
10. Estimation of carotenoids
11. Estimation of cholesterol
12. Estimation of total carbohydrate by anthrone method
13. Qualitative tests for checking of milk and water

17FP2016 UNIT OPERATIONS IN FOOD PROCESS ENGINEERING – II

Credits: 3:0:0

Course Objectives:
- To understand the various unit operations involved in food industry.
- To learn the operation and utilization of equipments involved.
- To choose suitable techniques for the food processing operation.

Course Outcomes:
- To understand the engineering operations that are critical to the food processing operations and industrial growth.
- To define the principles of food processing operations.
- To learn the material and energy balance related to the unit operations.
- To identify the factors affecting unit operations.
- To select suitable unit operations for a specific purpose.
- To appraise the performance of the mass transfer operations in food processing.

Adsorption – equipment – fixed bed adsorber - pressure swing adsorption – Adsorption from liquids.

Text Books

Reference Book

17FP2017 REFRIGERATION, AIR CONDITIONING AND COLD STORAGE CONSTRUCTION

Credits: 3:0:0

Course Objectives:
- To enable the students to understand the various concepts behind refrigeration of food.
- To enable students to know about food freezing and equipment involved.
- To enable students to understand various aspects of cold storage.

Course Outcomes:
- To understand refrigeration of food and its operational components.
To gain knowledge on various forms of food refrigeration in plants, stores and logistics.
To learn advanced food freezing concepts and techniques.
To study food safety aspects of chilled foods and frozen foods.
To comprehend cold chain management in food distribution sector.
To evaluate the cold storage and packaging of frozen perishable products.

Unit I - PRINCIPLES OF REFRIGERATION: Refrigeration – Ton of refrigeration, refrigeration cycles, Vapour Compression and Vapour Absorption cycles, Refrigerants, characteristics of different refrigerants, net refrigerating effect -Components of a Refrigeration system: Compressor, condenser, Evaporator, Expansion valves piping and different controls.

Unit II - COLD STORAGE: Insulation, properties of insulating materials, air diffusion equipment, Cold load estimation; prefabricated systems, walk-in-coolers, and Refrigerated container trucks: Freezer Storages, Freezer room Temperatures, Cooling towers: introduction, Construction and Working; Cold Storage practice, Stacking and handling of materials, Optimum temperatures of storage for different food materials.

Unit V - COLD CHAIN MANAGEMENT: Supply chain system - Important Factors to consider- logistic supply- Protocols for Domestic, Sea and Airfreight- Traceability and barcode – Product Temperature and Moisture monitoring- Refrigeration systems and Refrigerant types during field chilling, transportation via land, air and sea. Grocery stores and display cases, Home refrigerators - Cooling chain summary - Storage and packaging

Text Book

Reference Books

17FP2018 MECHANICAL SYSTEMS FOR FOOD PROCESSING

Credits: 3:0:0

Course Objectives:
• To provide knowledge about types of pumps and their applications.
• To learn about types of power transmission elements, steam generators and chillers.
• To understand the principles of material handling systems.

Course outcomes:
• To understand the working principle of pumps and their applications
• To know about the various power transmission elements and their design.
• To gain knowledge on working principle of boilers and measurement of performance.
• To study the working principle and applications of various mechanical refrigeration systems.
• To learn about the principles and applications of different food chillers and freezers.
• To appraise the construction and working principle of various material handling systems.

Unit I - FOOD PLANT PUMPS: Pumping theory- head developed-Types of pumps-Centrifugal pumps-Reciprocating pumps- piston pump-Rotary gear pumps- vane pumps- and diaphragm pumps-peristaltic pump-construction- working principles and applications (Simple problems).

Unit II - MECHANICAL POWER TRANSMISSION SYSTEMS: Types of shafts-design of shafts-solid and hollow shafts- types of coupling- belt drives-gear drives-chain drives and rope drives-types and materials (Simple problems).

Unit III - STEAM GENERATION AND DISTRIBUTION: Types of Water tube and smoke tube boilers-

Unit IV - REFRIGERATION SYSTEMS: Types of refrigeration systems- VCRs and VARs. Refrigerants, Components of refrigeration systems. Types of Chillers for Solid Foods, Types of Chillers for Liquid Foods, Types of Freezers. (Simple problems).

Unit V - MATERIAL HANDLING IN FOOD PLANTS: Material handling in food plants & Importance, Belt Conveyor, Roller Conveyor, Vibratory Conveyor, Screw Conveyor, Slat Conveyor, Pneumatic Conveyor, Bucket Elevator.

Text Books

Reference Books

17FP2019 CEREALS AND PULSES TECHNOLOGY

Credits: 3:0:0

Course Objectives:

- To create awareness about the processing of major cereals like paddy, maize etc.
- To study the milling techniques of cereals and pulses
- To study about the byproducts obtained during processing along with their uses.

Course Outcomes:

- To gain knowledge about the basic composition and structural parts of food grains.
- To know about paddy processing and rice milling equipment which will help them for developing entrepreneurial skills.
- To apply the knowledge to process food grains into value added products.
- To acquire the skills of processing wheat, maize and corn.
- To develop skills needed in the milling of pulses.
- To study the processing and milling of maize which will promote gainful employment.

Unit I - PADDY PROCESSING: Structure and Composition of paddy – Cleaning of paddy - Pre Cleaners, - Paddy Parboiling Processes. Physico-chemical changes during parboiling – effect of parboiling on cooking qualities - Parboiling methods - Methods of grain drying- LSU, rotary, columnar, recirculatory dryers – By-products of paddy processing - Paddy husk and its uses as husk ash, activated carbon, furfural and other by products – Value added products - Flattened and Puffed Rice.

Unit II - RICE MILLING: Rice milling flow chart - Modern Rice Milling equipments – paddy milling - Dehusking of paddy - Engelberg Huller, Under runner disc shellers, rubber roll sheller and Centrifugal dehusker - Paddy Separators – Satake and Schule Designs – Rice Polishers - Cone polishers and other types - Bran and Brokens separators - Rice mill yields and loss due to brokens at different stages of milling – milling efficiency - Use of Rice Bran in Edible oil Industry.

Unit III - WHEAT MILLING: Structure and composition of wheat – flow chart for wheat milling – milling process - equipments used in wheat milling – parboiling of wheat – bulgur wheat – products and by products of wheat.

Unit IV - PROCESSING OF MAIZE/CORN: Structure and composition of maize – milling methods - Pre-cleaning - cleaning equipment - degeneration and dehusking - Dry milling of maize – wet milling – flow chart - Products of milling - Flour – Semolina - Brewers’ grits etc and their applications - Bran and Fibre separation - Gluten and Starch Separation - Equipment used - Starch conversion into other value added products – Acid Hydrolysis, Enzyme Hydrolysis, Isomerization processes - Processing for Dextrose, Malto Dextrin and other products - Extraction and refining of Corn oil in brief.

Unit V - MILLING OF PULSES: Structure and composition – need for pulse milling – Unit operations of pulse milling – domestic and commercial scale pulse milling methods – Dry and wet milling, CFTRI, CIAE, Jadavpur methods - Process flow chart – Pulse milling machineries - dehusking in Pulse Pearler - splitting of pulses in Pulse splitter - Mini dhal mill - working principle - advantages and disadvantages – pulse milling efficiency - Grinding of split pulses - pulse flour products - their applications and equipments used.

Text Books

Reference Books

17FP2020 BAKERY, BEVERAGES AND CONFECTIONERY TECHNOLOGY

Credits: 3:0:0

Course Objectives:
- To provide know how on the machinery and process involved in the baking and confectionery process
- To understand the various types of sugar and its grades
- To know the process and machinery involved in the manufacture of beverages.

Course Outcomes:
- To gain knowledge on the ingredients, process and machinery involved in bakery and confectionery and beverage technology.
- To understand the importance and effect of quality of raw materials on the final products
- To apply the knowledge gained in formulating new types of products
- To critically analyze the process for maintaining and improving the quality of the final product
- To evaluate the steps involved in the process and improve existing technologies or develop newer technologies
- To design and create newer process and products that are better economically, nutritionally or technologically.

Unit I - LABORATORY TESTING OF WHEAT GRAIN QUALITY: Moisture tests, Grain hardness testing. Visco graph, Amylograph, Farinograph. Dough mixers, Dividers, rounders, Proofing, moulding, Ovens, Slicers, Packaging materials and equipment, Sanitation and safety.

Unit III - SUGAR MANUFACTURE: Energy and material balance of cane sugar process. Extraction of juice, extraction yields, drying and uses of Bagasse, Purification of juices-juice filtration and chemical purification, Clarification stages, Lime addition, pH control, Treatment of clarified juice, evaporation –multiple effect evaporators, Vacuum pans, Crystallization, Washing of sugar crystals and centrifugal separation/dewatering of sugar and other related processes. Sugar Refining, Sugar analysis, Sugar recovery – improvement, Sugar balance, energy conservation, Sugar plant sanitation.

Unit IV - MANUFACTURE OF ALCOHOLIC AND CARBONATED BEVERAGES: Manufacture of beer, wine and champagne - Quality characteristics, Manufacture of distilled beverages including whisky, brandy, rum and gin – Quality aspects
Manufacture of sugar-free, sugarless, carbonated beverages - quality aspects

Unit V - CONFECTIONERY TECHNOLOGY: Types of Confectionery, raw materials and processing of toffee, chocolates, fruit drops, hard boiled candies. Additives for Confectioneries. Equipments used in Confectionery manufacture.

Text Book

Reference Books
Course Objective:
- To study the characteristics of various enzymes applicable in food industries.

Course Outcome:
- The students will be able to have a clear knowledge about enzymes
- The students will be able to understand the importance of each of the factors that affect enzyme activity
- The students will be able to apply the same to maximize enzyme action
- The students will be able to analyze when a problem arises and give a suitable and logical solution
The students will be able to evaluate enzymes from different sources and select the right one depending on the type of food / condition.

The students would be able to make appropriate decision of evaluation and characterization when it comes to newer source of enzymes.

List of experiments

1. Estimation of reducing sugars by dinitrosalicylic acid
2. Estimation of amylase activity
3. Effect of pH on amylase activity
4. Effect of temperature on amylase activity
5. Effect of substrate concentration on amylase activity
6. Effect of enzyme concentration on amylase activity
7. Determination of total and specific activity of amylase
8. Estimation of protein by Lowry’s method
9. Estimation of protease activity
10. Effect of pH on protease activity
11. Effect of temperature on protease activity
12. Effect of substrate concentration on protease activity
13. Effect of enzyme concentration on protease activity
14. Determination of total and specific activity of protease
15. Studies on enzyme immobilisation

17FP2023 FOOD PRODUCT TECHNOLOGY LAB - I

Credits : 0:0:2

List of Experiments

1. Preparation of RTS beverage
2. Preparation of squash
3. Preparation of cordial
4. Preparation of jam and jellies
5. Preparation of marmalade
6. Preparation of ketchup
7. Preparation of basic bread
8. Preparation of French bread
9. Preparation of sweet atta biscuit
10. Preparation of butter scotch cookies
11. Preparation of sweet biscuits
12. Preparation of salt biscuits

17FP2024 ENGINEERING PROPERTIES OF FOOD MATERIALS

Credits: 3:0:0

Course Objectives:

- To study about the different methods of determining the quality and properties of different foods
- To gain knowledge of engineering properties during processing, packing, storage and transport.
- To impart knowledge about electrical properties of food and its applications in food engineering

Course Outcomes:

- To understand Engineering properties of food materials.
- To identify the structure and chemical composition of foods.
- To determine the physical properties of food materials.
- To calculate the water activity, food stability sorption and desorption isotherm of food materials.
- To study the difference between Newtonian and non-Newtonian fluids.
- To examine the thermal properties, electrical and magnetic properties of food.
- To measure the aero- and hydrodynamic characteristics and the application of frictional properties in grain handling, processing and conveying.

Unit I - PHYSICAL PROPERTIES OF FOODS: Methods of estimation of Shape, Size, volume, density, porosity and surface area, sphericity, roundness specific gravity. Frictional properties-coefficient of friction, Storage and flow pattern of agricultural crops

Unit II - RHEOLOGICAL PROPERTIES OF FOODS: Definition – classification – Newton’s law of viscosity – momentum-diffusivity-kinematic viscosity – viscous fluids – Newtonian and Non Newtonian fluids- Viscosity Measurements-Viscometers of different types and their applications-Texture measuring instruments-Hardness and brittleness of Food materials.
Unit III - THERMAL PROPERTIES OF FOODS: Definitions of Heat capacity, specific heat, enthalpy, conductivity and diffusivity, surface heat transfer coefficient, Measurement of thermal properties like specific heat, enthalpy, conductivity and diffusivity, DTA, TGA, DSC.

Unit V - ELECTRICAL PROPERTIES OF FOODS: Dielectric properties-dielectric constants-. Dielectric measurements-Ionic Interaction-Dipolar rotation. Effect of moisture, temperature and pressure on dielectric properties. Microwave heating-Infrared and Ohmic heating, Irradiation

Text Books

Reference Books

17FP2025 ENGINEERING PROPERTIES OF FOOD MATERIALS LAB
Credits : 0:0:2

List of Experiments
1. Determination of viscosity of liquid food materials
2. Determination of surface area of grains by using planimeter.
3. Determination of porosity of food grains.
4. Determination of specific gravity, specific volume and density of foods.
5. Determination of friction.
6. Determination of sphericity, roundness of food grains.
8. Measurement of angle of repose
10. Estimation of moisture content of food grains, fruits and vegetables.
11. Calculation of specific heat of food materials.
12. Calculation of thermal conductivity of food materials.

17FP2026 FOOD ENGINEERING AND PACKAGING LAB
Credits : 0:0:2

List of Experiments
1. Characterization of Dehydrated Products- Extruded Products
2. Characterization of Dehydrated Products-Extruded Ready-To-Cook and flaked Products.
3. Determination of Particle Size-Sieve Analysis
4. Determination of The Overall Heat Transfer Coefficient Of Plate Heat Exchanger – Co-Current Flow
5. Determination of The Overall Heat Transfer Coefficient Of Plate Heat Exchanger - Counter Current Flow
6. Determination of efficiency of a distillation column
7. Kinetics of Anthocyanin extraction
8. Kinetics of Anthocyanin degradation
9. Determination of viscosity by Ostwald’s viscometer
10. Determination of the migration characteristics of the given material – acid as stimulant
11. Determination of the migration characteristics of the given material – alcohol as stimulant
12. Determination of the Water Vapour Transmission rate of the given packaging material.
17FP2027 FOOD PROCESS EQUIPMENT DESIGN

Credits: 3:0:0

Course Objectives
- To enable the student to design and develop equipments used in Food Processing operations.
- Identify and discuss critical design of typical processing equipment.
- Understand the relationship between process design and Safety

Course Outcomes
- To identify the factors that will affect the design of equipments
- To classify the variables based on various properties
- To interpret the relation between various process variables
- To select the critical variables for the design of equipments
- To develop a conceptual design model
- To assess the validity of the conceptual model

Unit I - BASIC DESIGN CONSIDERATIONS AND MATERIALS OF CONSTRUCTION: Basic considerations in process equipment design. Materials of construction – mechanical properties and materials. Design considerations - stresses created due to static and dynamic loads. Process flow diagrams (PFD) – symbols used in PFD.

Unit II - DESIGN OF PRESSURE VESSELS: Design conditions and stresses – design stress, design criteria, corrosion allowance. Design of a shell and its components – cylindrical and spherical shells, head, nozzles and flange thickness. Vessels subjected to internal pressure and combined loading – cylindrical shell and spherical shell, stresses induced in vessel. Vessels subjected to external pressure. Optimum proportions of a vessel and optimum vessel size.

Text Books

Reference Books
3. Rajesh Mehta and J. George “Food Safety Regulation Concerns and Trade- The Developing Country Perspective,” Published by Macmillan India Ltd., New Delhi. 2005

17FP2028 FOOD ANALYSIS LAB - II

Credits : 0:0:2

Course Objective:
- To determine the quality of Food commodities
- To interpret the genuineness of the products based on the quality

Course Outcome:
- The students will have a knowledge of the quality parameters of different types of food products
- The students will be able to classify food products based on their quality
- The students would be able to interpret results and decide on the quality

2017 | Food Processing and Engineering
The students would be able to compare two brands of the same product and decide the best one based on the quality.

The students will be able to evaluate newer products based on quality.

The students will be able to design and develop newer and better methods of analysis for improving the quality of a Food Product.

List of Experiments:

Sugar rich products like Jams, Squashes, Marmalades, Sugar and Jaggery
1. Analysis of total sugars
2. Determination of pectin
3. Determination of acidity
4. Determination of total fruit solids
5. Determination of Calcium
6. Estimation of Ascorbic acid

Bakery Products including Wheat
7. Determination of gluten content
8. Determination of alcoholic acidity
9. Determination of maltose equivalent
10. Estimation of total nitrogen content by Kjeldahl method

Meat and Meat products
11. Determination of Extract release volume
12. Determination of swelling ratio
13. Determination of TMA

Milk and Milk products
14. Determination of Fat content by Gerber method
15. Determination of lactose content by Lactometer

Plantation Products including Tea, Coffee and Cocoa
16. Determination of Total extractives
17. Determination of Tannin content
18. Determination of Caffeine

Vitamins, Minerals and Colourants
19. Estimation of anthocyanins
20. Estimation of Chlorophyll
21. Determination of Iron

17FP2029 COMPUTER AIDED FOOD PROCESS EQUIPMENT DESIGN LAB
Credits: 0:0:2

Course Objectives:
- Design of plants using computing software.
- Simulating process environment virtually.
- Understanding relational database and design specific unit operations.

Course Outcomes:
- Provide the student with a good understanding of computer aided design principles and practice.
- Learn effective approaches to building up knowledge about a process through simulation.
- Acquire the skills needed to design a chemical plant using ANSYS FLUENT.

List of Experiments:
1. Basic concept of simulation and CFD
2. Introduction to GAMBIT
3. Introduction to FLUENT
4. Heat transfer through laminar flow
5. Heat transfer through Turbulent flow.
7. 2 dimensional heat flow analysis
8. 3 Dimensional heat flow analysis
9. Conjugate heat transfer study
17FP2030 FOOD ADDITIVES

Credits: 3:0:0

Course Objectives:
- To understand the Chemistry of the additives added to food
- To know the limits of addition as prescribed by FAO/WHO and PFA
- To develop newer additives with improved safety standards.

Course Outcomes:
- To know about importance of additives in maintaining or improving food quality.
- To learn about the development of various instant premixes by addition of preservatives within the permissible limits.
- To understand the applications of food additives and how to study the toxicity of food additives.
- To study the importance of additives in maintaining or improving food quality.
- To identify and design newer products, with better quality using additives which are economical and safe.
- To describe the properties, levels of addition and toxicity data of various food additives.

Unit I - INTRODUCTION : Food additives - definition and classification, food safety levels as per the specifications, safety evaluation of additives – determination of acute and chronic toxicity - NOEL, ADI, LD50 value, PFA regulations, GRAS status.

Unit II - ACIDULANTS: Types, chemical properties, levels of additions in individual products, toxicity data of Acidulants – Preservatives – Emulsifiers and gums - Antioxidants

Unit III - HUMECTANTS: Types, chemical properties, levels of additions in individual products, toxicity data of Dough conditioners - flour improvers – Humectants

Unit IV - FAT SUBSTITUTES AND REPLACERS: Types, chemical properties, levels of additions in individual products, toxicity data of Colourants – Natural and artificial, Flavourants, Flavour enhancers, Fat substitutes and replacers

Unit V - NUTRITIONAL ADDITIVES: Types, chemical properties, levels of additions in individual products, toxicity data of Sweeteners – Natural and synthetic, Chelating agents, antibrowning agents, Nutritional additives

Text book

Reference Book

17FP2031 PLANTATION PRODUCTS AND SPICES TECHNOLOGY

Credits: 3:0:0

Course Objectives:
- To study about the various methods of processing tea products.
- To demonstrate a basic knowledge on process of coffee, and cocoa.
- To develop an awareness of various processing procedure for major spices & minor spices.

Course Outcomes:
- To define the different unit operations and its equipments involved in coffee, tea and cocoa processing
- To gain knowledge in processing of plantation crops and spices and also its value added products.
- To outline ways in which quality loss can be minimised during preparation and processing
- To develop value added products from plantation products and spices
- To demonstrate appropriate technique for the extraction of spice oil and oleoresin with quality standards
- To acquire a confident to get placement in any kind of cereals and spices industry with minimum post harvest losses and maximum benefit to the industry.

Unit III - CHEMISTRY AND TECHNOLOGY OF COCOA AND COCOA PRODUCTS : Occurrence – Chemistry of the cocoa bean – changes taking place during fermentation of cocoa bean – Processing of cocoa
bean – cocoa powder – cocoa liquor manufacture Chocolates – Types – Chemistry and technology of chocolate manufacture – Quality control of chocolates.

Unit IV - CHEMISTRY AND TECHNOLOGY OF MAJOR SPICES: Pepper, Cardamom, ginger, Chilli, mint, and turmeric – Oleoresins and essential oils – Method of manufacture – Chemistry of the volatiles – Enzymatic synthesis of flavor identicals – Quality control of major spices.

Unit V - CHEMISTRY AND TECHNOLOGY OF MINOR SPICES: Cumin, Coriander, Cinnamon, fenugreek, Garlic, Clove Vanilla, Coconut, Areca nut, Oil palm and Cashew - Oleoresins and essential oils – Method of manufacture – Chemistry of the volatiles – Quality control of minor spices

Text Books

Reference Books

Credits: 3:0:0

Course Objectives:
- To understand the physical and chemical properties of fats and oils.
- To study the extraction and refining processes of various oils and fats.
- To learn the packaging, quality standards of fats and oils.

Course Outcomes:
- To enumerate the importance of fats and oils.
- To describe the manufacturing process of oils and fats.
- To apply knowledge on manufacture of designer fats.
- To appraise the quality attributes of oils and fats.
- To design suitable packaging materials.
- To invent methods for industrial applications of oils and fats.

Unit II - EXTRACTION METHODS: Oil extraction methods –mechanical expression – ghani , power ghani, rotary, hydraulic press, screw press, expellers, filter press - principle of operation and maintenance- solvent extraction process – steps involved, batch and continuous-continuous solvent extraction process for rice bran, soy bean and sunflower-oil extraction process for groundnut and cotton seed-production of special oils – palm oil, virgin coconut oil – extraction process.

2017 | Food Processing and Engineering
Unit V - INDUSTRIAL APPLICATIONS AND QUALITY STANDARDS: Industrial applications of fats and oils – quality regulations - manufacture of soap, candle, paints and varnishes - ISI and Agmark standards – site selection for oil extraction plant- safety aspects- HACCP standards in oil industries.

Text books

Reference book

Credits: 3:0:0

Course Objectives:
- To understand about the composition and nutritive value of meat, poultry and fish
- To know about processing technology of meat, poultry and fish
- To understand the HACCP and GMP of meat plant.

Course Outcomes:
- To enumerate the composition and role of microorganisms in meat.
- To understand the slaughtering, carcass processing methods and equipments used for processing meat.
- To apply the technological ideas in preparation of various types of meat products and design of equipments used for processing meat.
- To understand the HACCP and GMP of meat processing
- To evaluate the processing of poultry meat, meat products and egg products.
- To predict the role of microorganisms in spoilage, biochemistry, preservation and fishery products

Unit I - CHEMISTRY AND MICROBIOLOGY OF MEAT: Meat composition from different sources; Definitions and measurements, Explanation of muscle structure and compositions and its modifiers, White and Red Meat. Description of animal fat and its modifiers, description of bone and its modifiers; Post mortem muscle chemistry. Meat colour, flavors of meat products,

Unit II - SLAUGHTERING AND CARCASS PROCESSING: Modern abattoirs and some features, Antemortem handling and welfare of animals, design of handling facilities, Hoisting rail and traveling pulley system, and stunning methods, stunning pen, slaughtering equipment, Washing area, Sticking, bleeding, dressing, Beef/Sheep and Pig Dressing operations, Offal handling and inspection. Inedible by products: Carcass processing equipment, Operational factors affecting meat quality, effects of processing on meat tenderization; meat processing equipment, electrical gadgets and manual gadgets; Typical lay outs.

Unit III - MEAT PRODUCTS: Canned meat, Frozen meat, Cooked and Refrigerated meat, Dried and preserved meat, Cured meat. Prepared meat products, Production methods for Intermediate moisture and dried meat products. Different kinds of sausages – Equipment used for all the process operations; Meat plant hygiene, Good manufacturing practice and HACCP.

Unit IV - PROCESSING OF POULTRY PRODUCTS: Poultry industry in India, measuring the yields and quality characteristics of poultry products, microbiology of poultry meat, spoilage factors; Plant sanitation; Poultry meat processing operations in detail along with equipment used – Defeathering, bleeding, Scalding etc.; Packaging of poultry products, refrigerated storage of poultry meat, by products – eggs, egg products, Whole egg powder, Egg yolk products, their manufacture, packaging and storage.

Unit V - FISH AND OTHER MARINE PRODUCTS PROCESSING: Commercially important marine products from India. Basic biochemistry, spoilage factors of fish, field refrigeration and icing practice, merits and demerits. Use of dry ice and liquid nitrogen as preservation elements, use of Refrigerated Sea Water (RSW) for preservation, Changes during storage in RSW and CSW; Freeze preservation; freezing of prawn and shrimp, weighing, filling and glazing. Individual quick freezing - relative merits and demerits. Canning operations, Salting and drying of fish, pickling and preparation of fish protein concentrate and fish oil.

Text Book

Reference Books

17FP2034 DRYING TECHNOLOGY

Credits: 3:0:0

Course Objectives:
- To understand the basic theory of drying and its significance in food systems
- To understand the importance of drying as a method of food processing
- To learn about the relative advantages / disadvantages of each method of drying

Course Outcomes:
- To gain knowledge on drying principles and psychrometric chart
- To apply the principles to solve problem on drying
- To understand different types of dryers for different food materials
- To design dryers for different types of foods
- To assess the concept behind industrial dryers
- To evaluate the dryer performance

Text Books

Reference Books

17FP2035 FOOD PACKAGING TECHNOLOGY

Credits: 3:0:0

Course Objectives:
- To study about the functions of packaging along with the influence of various factors on food.
- To know about the different packaging materials, their manufacturing process and equipment.
- To study about the various methods of packaging to improve the shelf life of the products.

Course Outcomes:
- To understand the need and functions of packaging as a solution to various factors affecting food.
- To gain knowledge on shelf life of food and various methods of estimating it.
- To explain the different packaging materials, their manufacturing process and equipment involved.
- To know about the various closures and sealing mechanisms for different packaging materials.
- To select the different printing and labelling methods and legislative requirements.
- To devise innovations in food packaging and their applications.

Unit IV - FILLING AND SEALING OPERATIONS FOR VARIOUS TYPES OF PACKAGES: Closing and sealing of Rigid plastic containers. Filling and sealing of Flexible plastic containers, Seal types-Bead seals, Lap Seals and Fin seals – Differences and advantages, Hot wire sealing, hot bar sealing and impulse sealing – differences and relative advantages, Form fill Seal equipment: Printing on packages, Bar codes, Nutrition labeling and legislative requirements. Filling and Sealing of pouches, pouch from fill seal machines.

Text Book

Reference Books

17FP2036 STORAGE ENGINEERING

Credits : 3:0:0

Course Objectives :
- To enable the student to understand: The need for effective and scientific storage of food commodities.
- To provide an opportunity for students to develop skills in evaluating storage structures and also to design structures for various perishable commodities.

Course Outcomes :
- To recognize the need for adaptation of scientific storage methodologies for food commodities.
- To distinguish between traditional storage structures and modern storage structures.
- To design and construct modified storage structure based on the requirement on the farm.
- To calculate the amount of CO₂ & O₂ that can be permissible in systems that require a manipulation of the storage structures in terms of atmospheric conditions.
- To criticize, evaluate and judge the efficiency of commercial storage structures.
- To modify structures and environments to better fit the needs of commodities and consumer alike.

Unit I - PHYSICO-CHEMICAL AND THERMAL PROPERTIES OF GRAINS: Grain dimensions, bulk density, true density, porosity, coefficient of friction, angle of repose, thermal conductivity and aerodynamic properties. Psychrometry: humidity, % relative humidity, humid heat, deterioration index, wet bulb temperature, use of psychrometric charts.

Unit II - INSECTS AND PESTS: Types, extent of losses during storage, causes and control measures, Insecticides- principles, scope of application in warehouses; requirements, group of active ingredients, choice, toxicity, resistance, application techniques, Fumigants - chemicals, areas of application, choice, toxicity, application rates, exposure time and resistance. Rodenticides - Types and effectiveness and limitations, important moulds and bacteria involved in spoilage of grains; effect on physico-chemical and sensory quality of grains; mycotoxins.
Unit III - GRAIN STORAGE STRUCTURES: Grain storage structures - location and material selection for storage building. Types - traditional, modern; temporary and permanent storage structures; design considerations - pressure distribution in storage bins.

Unit IV - GRAIN STORAGE THEORY: Principles, moisture movement during bulk storage of grains, methods of aeration, various theories, Physical, chemical, microbiological and sensory changes occurring during storage.

Unit V - CONTROLLED ATMOSPHERE STORAGE: Air tight, controlled atmosphere and modified atmospheric storage; differences, principles, optimization of storage gas composition, rate of supply, control systems for oxygen and carbon dioxide- their effect on microbes and limitations.

Text Book

Reference Book

17FP2037 PROCESS ECONOMICS AND PLANT LAYOUT DESIGN

Credits: 3:0:0

Course Objectives:
- To enable the students understand various concepts of economics of food plant.
- To understand the processes involved in layout design.
- To understand the development and design consideration and cost estimation in food industry.

Course Outcomes:
- To gain knowledge on the various factors involved in setting up a Food Processing Industry.
- To understand the process of food plant layout design.
- To apply their knowledge to design projects for setting up a Food Processing Industry.
- To analyse the problems involved in deciding the level of manufacture of a food product.
- To evaluate the options involved and decide on the right choice based on the economics of the system.
- To develop own industry or plan turn-key projects based on the request from customers.

Unit I - FOOD PROCESS DESIGN DEVELOPMENT: Technical feasibility survey of Food Industry, process development, Food Process flow sheets – Hygienic food process design - equipment design and specifications – Computed-aided process design – Principles of spread-sheet aided process design (Basic concepts only)

Unit II - PLANT LAYOUT: Marketability of the product, availability of technology, raw materials, equipments, human resources, land and utilities, site characteristics, waste disposal, Government regulations and other legal restrictions, community factors and other factors affecting investment and production costs. Plant Layout based on process and product. Richard Muther’s Simple Systematic Plant Layout.

Unit III - PROJECT EVALUATION AND COST ESTIMATION: Capital investments – fixed capital investments including land, building, equipments and utilities, installation costs (including equipments, instrumentation, piping, electrical installation and other utilities), working capital investments. Methods of Cost estimation – Cost Indices.

Unit IV - PRODUCT COST AND PLANT OVERHEADS: Manufacturing costs – Direct production costs(including raw materials, human resources, maintenance and repair, operating supplies, power and other utilities, royalties, etc.). - Process Profitability - Application to a Food Processing plant e.g. Tomato processing - Administration, safety and other auxiliary services, payroll overheads, warehouse and storage facilities etc. Depreciation, Amortization and methods of determining the same. Introduction to Food Safety Management System.

Unit V - PROFITABILITY ANALYSIS: Return on original investment, interest rate of return, accounting for uncertainty and variations and future developments. Cash flow diagram and its importance - Optimization techniques – Linear and Dynamics programming, Optimization strategies.

Text Book

Reference Books

17FP2038 NON THERMAL TECHNIQUES OF FOOD PRESERVATION

Credits: 3:0:0

Course Objectives:
- To impart understanding about different Emerging technology in Food Processing.
- To enable the students to apply the knowledge in real time Food Processing Innovations.
- To innovate new technologies or hurdle combinations for unexplored realms of food processing.

Course Outcomes:
- To know the emerging technologies applied to food processing
- To understand the relative advantages and disadvantages of emerging technologies over existing technologies
- To apply the non thermal technologies as alternative food processing methods
- To identify the potential of newer technologies for commercialization
- To develop strategies for applying the technologies to wide range of food

Unit I - HIGH PRESSURE PROCESSING OF FOODS: Principles – applications to food systems – effect on quality – textural, nutritional and Microbiological quality – factors affecting the quality – modelling of high pressure processes – High Pressure Freezing, Principles and Applications

Unit III - OSMOTIC DEHYDRATION OF FOODS: Principle – Mechanism of osmotic dehydration – Effect of process parameters on mass transfer – Methods to increase the rate of mass transfer – Applications – Limitations of osmotic Dehydration – Management of osmotic solutions

Unit V - PULSED LIGHT AND HURDLE TECHNOLOGY: Basics of hurdle technology – Mechanism Application to foods - Newer Chemical and Biochemical hurdles- organic acids – Plant derived antimicrobials – Antimicrobial enzymes – bacteriocins – chitin / chitosan (only one representative example for each group of chemical and biochemical hurdle)

Text Book

Reference Books

17FP2039 FUNCTIONAL FOODS AND NUTRACEUTICALS

Credits: 3:0:0

Course Objectives:
- To understand the basics of nutraceuticals and functional foods
- To study the significance of nutraceuticals and their role in disease prevention
- To hypothesize the safety and efficacy of individual nutraceuticals and functional foods products,
- To emphasize regulatory issues that influences the development and commercialization of nutraceuticals and functional foods in global markets
- To identify new strategies for marketing of traditionally known nutraceuticals
Course Outcomes:
- To understand the meaning of functional foods and nutraceuticals.
- To recognize the structures of the major bioactive food constituents that are being incorporated into functional foods.
- To describe current state of the knowledge with regards to the application of functional foods for risk reduction of chronic diseases.
- To evaluate critically the methods for extraction and identification of nutraceutically significant molecules.
- To distinguish functional food products that are nutritionally logical, technically feasible, and that also are in compliance with FDA regulatory guidelines.
- To reorganize the issues related to development and commercialization of nutraceuticals and functional foods products.

Unit II - FLAVANOIDS AND CAROTENOIDS AS ANTIOXIDANTS: General background on phytochemicals as antioxidants - flavonoids and lipoprotein oxidation - Evidence for specific Antioxidant mechanisms of flavonoids - Dietary carotenoid and carotenoid absorption - Approaches to measurement of absorption - Metabolism of Carotenoids – Carotenoids as anticancer agents.

Unit III - OMEGA-3 FATTY ACIDS AND CLA: Introduction to Lipoprotein metabolism - PUFA and Cardiac arrhythmias - Preventative role of n-3 fatty acids in cardiac arrhythmias - Mechanism of action on n-3 PUFA’s - ω – 3 fish oils and their role in glycemic control- ω – 3 fatty acids and rheumatoid arthritis - Chemistry and nomenclature of CLA – Analysis of CLA in food and biological samples – CLA in food products and biological samples – Biological actions and potential health benefits of CLA – Mechanisms of CLA action – Potential adverse effects of CLA.

Text Books

Reference Book

17FP2040 FOOD ADDITIVES LAB

Credits : 0:0:2

Course Objectives
- To understand the Chemistry of the additives added to food
- To understand the importance of additives in maintaining or improving food quality - To develop newer additives with improved safety standards.

Course Outcomes
- To know about the importance of additives in maintaining or improving food quality.
To learn the chemistry of the additives added to a food.
To express their knowledge on development of various instant premixes by addition of preservatives within the permissible limits.
To understand the properties, levels of addition and toxicity data of various food additives.
To demonstrate various applications of food additives and how to study the toxicity of food additives

List of Experiments
1. Estimation of Sulphur-Di-Oxide
2. Estimation of Sodium Benzoate
3. Estimation of Sorbic Acid
4. Estimation of Butylated hydroxyl toluene
5. Estimation of Propyl Gallate
6. Estimation of Ascorbic Acid
7. Estimation of Iron
8. Estimation of Copper
9. Determination of Saccharin
10. Estimation of curcumin in turmeric
11. Estimation of capsacin
12. Estimation of iodine in Iodised salt
13. Estimation of salt in pickled products

17FP2041 FOOD PRODUCT TECHNOLOGY LAB - II

Credits : 0:0:2

List of Experiments
1. Preparation of Rasagulla
2. Preparation of Sandesh
3. Preparation of Paneer
4. Preparation of Kalakhand
5. Preparation of Peda
6. Preparation of Gulab Jamun
7. Preparation of Bread and Butter Pickle
8. Preparation of Hot and Sour Tomato Pickle
9. Preparation of Chilly and Ginger Pickle
10. Preparation of Soanpapdi
11. Preparation of Mysorepak
12. Preparation of Gummies
13. Preparation of aerated confectionery

17FP2042 PRINCIPLES OF FOOD SCIENCE AND NUTRITION

Credits: 3:0:0

Course objectives:
- To understand the fundamentals of bio molecules
- To impart basic knowledge on the methods of analysis of fats and oils
- To know the food additives and microbes associated with food

Course outcomes:
- To enumerate and describe the fundamentals of food constituents and quality analysis.
- To understand the types of food additives and their importance in food.
- To examine the role of microorganisms associated with food and their importance in fermentation
- To predict the role of food borne diseases and intoxication
- To enumerate the factors responsible for spoilage of various foods.
- To understand the methods of preservation of foods.

Unit II - FOOD ADDITIVES: Introduction to food additives - Classification, intentional and non-intentional additives, functional role in food processing and preservation; food colourants – natural and artificial; food flavours; enzymes as food processing aids.
Unit III - MICROORGANISMS ASSOCIATED WITH FOOD: Bacteria, yeasts and molds – sources, types and species of importance in food processing and preservation; Oriental fermented foods and, Production of Sauerkraut, Wine, Lactic acid and single cell protein-examples and their applications

Unit IV - FOOD BORNE DISEASES AND INTOXICATION: food intoxications and poisonings – Bacillus spp., Clostridium botulinum, Staphylococcus aureus, Hepatitis, Gastroenteritis viruses, Entamoeba histolytica. Food spoilage – factors responsible for spoilage, spoilage of vegetable, fruit, meat, poultry, beverage and other food products.

Unit V - FOOD PRESERVATION: Principles involved in the use of sterilization, pasteurization and blanching, thermal death point - methods of determination of thermal death time (Graphical, mathematical) – D, Z and F values – Importance of 12 D concept, Time – Temperature indicators - Canning; frozen storage-freezing methods, factors affecting quality of frozen foods; irradiation preservation of foods.

Text Books

Reference Books

17FP2043 PROCESSING OF FOOD COMMODOITIES

Credits: 3:0:0

Course Objectives:
- To study various processing methods for various food materials like fruits & vegetables, dairy products, cereals, meat, poultry, fish and bakery products.
- To study various innovative food processing techniques.

Course Outcomes:
- To understand the basics of food processing.
- To know the various processing technologies involved in fruits and vegetables, dairy, cereals, meat, fish, egg and plantation products.
- To learn the basics on microbiology of food products.
- To describe the process of manufacture of various food products.
- To recognize various methods of preservation of food.
- To express the possible arena of entrepreneurial activity related to food products.

Unit I - CEREAL, PULSES AND OIL SEEDS TECHNOLOGY: Rice milling, Pulse milling, Wheat milling - Oil extraction - Methods of manufacture of Bread - different processes of manufacture - types of breads - buns, biscuits, cakes and cookies - Pasta products - Tortilla - Method of manufacture.

Unit II - FRUITS AND VEGETABLE PROCESSING: Production of Fruits and vegetables in India, Cause for heavy losses, preservation treatments - Basics of Canning, Minimal processing and Hurdle technology as applied to Vegetable and Fruit processing. Processing of fruit juices, Dehydration, Aseptic processing.

Unit IV - MEAT, POULTRY AND FISH PROCESSING: Meat composition from different sources, Definitions and measurements, Carcass Processing, Meat Products, Processing of Poultry Products, Fish and other Marine Products Processing.

Unit V - PLANTATION PRODUCT TECHNOLOGY: Processing of Tea, Coffee and Cocoa - Outline of the methods of manufacture of - green tea, black tea, instant tea, Instant coffee, Cocoa and Chocolate. Outline of the methods of processing of Pepper, cardamom, ginger, vanilla and turmeric

Text Books

17FP2044 TECHNOLOGY OF PACKAGING

Credits: 3:0:0

Course Objectives:
- To provide knowledge on packaging and packaging materials.
- To understand the working of various packaging methods.
- To enable the students to understand applications of various packaging materials in food industry.

Course Outcomes:
- To understand food quality and need food packaging.
- To classify food packaging design strategies and framework.
- To explain the manufacturing process of various packaging materials.
- To select common methods of sealing of various food packaging materials.
- To apply the knowledge on advance food packaging methods and their applications in industry.
- To adapt the principle and need for testing of packaging materials.

Text Book

Reference Books

17FP2045 NUTRITION AND FOOD SCIENCE

Credits: 3:0:0

Course Objectives:
- To learn the nutrients required for health, and their sources in diets.
- To learn how nutrients in foods affect and are affected by metabolic functions of the human body.
- To learn how variability among research results leads to consumer perceptions of changing or conflicting recommendations for dietary practices from the nutrition community.

Course Outcomes:
- To understand the basis in the area of nutritional assessment in health and disease
- To evaluate the biological functions of foods for health in addition to nutritional values
- To judge the potential for adverse events related to dietary supplements
- To identify which nutrients are sources of energy for the body and how an excess or a deficiency of energy can affect the body.
- To formulate nutrition therapy for chronic disease
To compare the various types of nutrition research with respect to type and reliability of information produced.

Unit IV - MINERALS: Physiological role, bio-availability, requirements, sources and deficiency of Macro minerals: Calcium, Phosphorus Magnesium, Sodium, Potassium chloride. & Micro minerals: Iron, Zinc, copper, selenium, chromium, iodine, manganese, Molybdenum and fluoride.

Unit V - RECENT TRENDS IN NUTRITION: Principles of dietary management in gout, rheumatism, AIDS/HIV - Cancer-risk factors, symptoms, dietary management, role of food in prevention of Cancer. Role of functional foods, health foods and novel foods, organically grown foods, recent concepts in human nutrition like nutrigenomics, nutraceuticals etc.

Text Books

Reference books
LIST OF COURSES

<table>
<thead>
<tr>
<th>Sl.No</th>
<th>Course Code</th>
<th>Name of the Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15FP3001</td>
<td>Stability and Shelf Life Testing of Foods</td>
<td>3:0:0</td>
</tr>
<tr>
<td>2</td>
<td>15FP3002</td>
<td>Technology of Fresh Cut Fruits and Vegetables</td>
<td>3:0:0</td>
</tr>
<tr>
<td>3</td>
<td>16FP1001</td>
<td>Basics of Food Science and Technology</td>
<td>3:0:0</td>
</tr>
<tr>
<td>4</td>
<td>16FP2001</td>
<td>Food and Nutrition Security of GM Crops</td>
<td>3:0:0</td>
</tr>
<tr>
<td>5</td>
<td>16FP2002</td>
<td>Post Harvest Technology of Foods</td>
<td>3:0:0</td>
</tr>
<tr>
<td>6</td>
<td>16FP2003</td>
<td>Mechanization and Post Harvest Technology Lab</td>
<td>0:0:2</td>
</tr>
</tbody>
</table>

REVISED VERSION COURSES

<table>
<thead>
<tr>
<th>Sl.No</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14FP3017</td>
<td>Food Industry Waste Management</td>
<td>3:0:0</td>
</tr>
<tr>
<td>2</td>
<td>14FP3024</td>
<td>Food Processing and Biotechnology</td>
<td>3:0:0</td>
</tr>
<tr>
<td>3</td>
<td>14FP3025</td>
<td>Advances in Processing of Horticultural Products</td>
<td>3:0:0</td>
</tr>
</tbody>
</table>

15FP3001 STABILITY AND SHELF LIFE TESTING OF FOODS

Credit: 3:0:0

Course Objectives:
- To enable the student to know the importance of sorption isotherms in stability of Food products.
- To provide knowledge on methods of shelf life testing of Food products
- To make the students acquire knowledge on effect of packaging materials on the shelf life of products

Course Outcomes:
- The students would be able to develop skills on determining the shelf life of new products
- The students would apply their knowledge in developing newer and cost-effective packaging materials for improved quality of processed products
- The students would be able to develop foods that are wholesome and safe

Text books
15FP3002 TECHNOLOGY OF FRESH CUT FRUITS AND VEGETABLES
Credit: 3:0:0

Course Objectives:
- To enable the student to know about importance of fresh cut fruits and vegetables.
- To provide knowledge on processing & preservation techniques of the same
- To make the students acquire knowledge on fruit and vegetable processing

Course Outcomes:
- The students would be able to develop skills on cut fruits and vegetables preservation techniques.
- The students would apply their knowledge in developing newer and cost-effective strategies of fruit and vegetable preservation
- The students would be able to develop foods that are wholesome and safe

Course Description:
Fresh-cut Produce: Tracks and Trends – Regulatory issues - Quality Parameters – Safety aspects – Physiology of fresh cut produce – Enzymatic effects of flavor and texture – Microbiology of fresh cut produce – Microbial enzymes associated with fresh cut produce – Preservative treatments – Packaging and Modified atmosphere packaging of fresh cut produce – Flavour and aroma of fresh cut produce – Sensory quality evaluation of fresh cut produce

Reference Books

16FP1001 BASICS OF FOOD SCIENCE AND TECHNOLOGY
Credits: 3:0:0

Course Objectives:
- To understand about nutrition and its importance
- To impart knowledge of Food Safety and its scope in quality control of foods
- To study the basic knowledge about food processing and preservation techniques

Course Outcomes:
- To get exposure about nutrition and nutritive value of different food sources
- To develop skills to identify and examine the food-borne microorganisms
- Apply knowledge about various processing methods in Food Industries

Description:
Reference Books

16FP2001 FOOD AND NUTRITION SECURITY OF GM CROPS

Credits: 3:0:0

Course Objectives:
- To provide foundation in Food safety regulations
- To create awareness on the importance of GM crops
- To develop basic knowledge on techniques in nutrition security of GM crops.

Course Outcomes:
- The student would acquire knowledge on International food safety regulations.
- The student acquires knowledge in current research achievements in the field of nutritional safety of GM crops

Description:
International aspects of the quality and safety of Foods derived from modern Biotechnology, Application of ELISA for detection of Toxins in food, Biosensors for food quality Assessment, Malnutrition, consequences, causes, prevention and control. Applied community nutrition. Food safety and food faddism. safety testing for toxicity, allergenicity, anti nutritional effects. Native toxins and toxins produce during storage, health hazards.

References Books
16FP2002 POST-HARVEST TECHNOLOGY OF FOODS

Credits: 3:0:0

Course Objectives:
- To study the principles of Post-Harvest technology
- To provide knowledge on food processing techniques

Course Outcomes:
- The student get knowledge on Post-Harvest techniques of food crops
- The student become aware on research in post harvest crop management

Description:
Classification, chemical composition and nutritional values of food grains (cereals including millets, legumes and pulses). Anti-nutritional factors in food-methods for their removal- aflatoxins and their removal. Contamination, processing and preservation of food products: bakery, fruits and vegetables, meat, fish and poultry, dairy. Thermal and Non-thermal methods of food preservation: Principles and applications-Canning, evaporation, drying, freezing, irradiation and HPP. Post harvest technology of cereals and pulses, fruits and vegetables, milk and milk products, meat, fish and poultry, plantation products and spices.

References Books

16FP2003 MECHANIZATION AND POST-HARVEST TECHNOLOGY LAB

Credits: 0:0:2
Co-requisite: 16FP2002 Post Harvest Technology of Foods

Course Objectives:
- To expose the students to the importance of post harvest technology
- To expose the students to food preservation techniques

Course Outcomes:
- The student would acquire knowledge on Post-Harvest techniques
- The student would know about the techniques in food preservation
- The student would be able to develop different kinds of food products

The faculty conducting the laboratory will prepare a list of 12 experiments and get the approval of HoD/ Director and notify it at the beginning of each semester.
Course Objectives
- To enable the student, understand the extent of wastes produced in a food industry and its environmental effects
- To enable the student, understand the nature of food wastes and methods of treatment
- To enable the student, know the importance of waste utilization in Food industries

Course Outcomes
- Students will attain knowledge about various legalizations on food industry and its environmental impact
- Students will attain knowledge about the methods of managing food wastes
- Students will gain knowledge on the methods for utilization of food wastes
- Students will gain knowledge on getting value-added products from wastes

Reference Books
Food Chemistry - Constituents of food – Enzymatic and Non-enzymatic browning - Food additives: intentional and non-intentional and their functions; Enzymes in food processing. Food Microbiology - food fermentation; Food borne diseases – infections and intoxications, food spoilage – causes and prevention. Thermal and non-thermal methods of food preservation : Principles and Applications in Food System - Technology of Manufacture of Food Products- Bakery and confectionery, vegetable and fruit products, Plantation products and spices, Milk and Milk products, edible oils and fats; meat, poultry and fish products.

Reference Books

14FP3025 ADVANCES IN PROCESSING OF HORTICULTURAL PRODUCTS
Credit 3:0:0 (Version 1.1)

Course Objectives:
- To enable the student to know about post harvest technology of fruits and vegetables.
- To provide knowledge on processing & preservation techniques of fruits and vegetables.
- To make the students acquire knowledge on fruit and vegetable processing

Course Outcomes:
- The students would be able to develop skills on various preservation techniques.
- The students would apply their knowledge in developing newer and cost-effective strategies of food preservation.
- The students would be able to develop foods that are wholesome and safe.

Reference Books
LIST OF SUBJECTS

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Name of the Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>14FP2001</td>
<td>Principles of Food Process Engineering</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP2002</td>
<td>Food Chemistry</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP2003</td>
<td>Fluid Mechanics and Heat Transfer Lab</td>
<td>0:0:2</td>
</tr>
<tr>
<td>14FP2004</td>
<td>Food Analysis Lab – I</td>
<td>0:0:2</td>
</tr>
<tr>
<td>14FP2005</td>
<td>Heat and Mass Transfer</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP2006</td>
<td>Dairy Engineering and Technology</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP2007</td>
<td>Unit Operations in Food Process Engineering - I</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP2008</td>
<td>Fruit and Vegetable Processing Technology</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP2009</td>
<td>Unit Operations in Food Process Engineering and Grain Processing Lab</td>
<td>0:0:2</td>
</tr>
<tr>
<td>14FP2010</td>
<td>Unit Operations in Food Process Engineering - II</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP2011</td>
<td>Refrigeration, Air conditioning and Cold Storage</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP2012</td>
<td>Food Packaging Technology</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP2013</td>
<td>Storage Engineering</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP2014</td>
<td>Enzymology Lab</td>
<td>0:0:2</td>
</tr>
<tr>
<td>14FP2015</td>
<td>Food Product Technology Lab - I</td>
<td>0:0:2</td>
</tr>
<tr>
<td>14FP2016</td>
<td>Physical Properties of Food Materials</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP2017</td>
<td>Supply Chain Management</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP2018</td>
<td>Food Safety Regulations</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP2019</td>
<td>Engineering Properties of Food Materials Lab</td>
<td>0:0:2</td>
</tr>
<tr>
<td>14FP2020</td>
<td>Food Engineering and Packaging Lab</td>
<td>0:0:2</td>
</tr>
<tr>
<td>14FP2021</td>
<td>Food Process Equipment Design</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP2022</td>
<td>Food Analysis Lab – II</td>
<td>0:0:2</td>
</tr>
<tr>
<td>14FP2023</td>
<td>Computer Aided Food Process Equipment Design Lab</td>
<td>0:0:2</td>
</tr>
<tr>
<td>14FP2024</td>
<td>Mechanical Systems for Food Processing</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP2025</td>
<td>Cereals and Pulses Technology</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP2026</td>
<td>Plantation Products and Spices Technology</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP2027</td>
<td>Food Additives</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP2028</td>
<td>Fat and Oil Processing Technology</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP2029</td>
<td>Technology of Meat, Poultry and Fish</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP2030</td>
<td>Bakery and Confectionery Technology</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP2031</td>
<td>Drying Technology</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP2032</td>
<td>Process Economics and Plant Layout Design</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP2033</td>
<td>Food Additives Lab</td>
<td>0:0:2</td>
</tr>
<tr>
<td>14FP2034</td>
<td>Food Product Technology Lab - II</td>
<td>0:0:2</td>
</tr>
<tr>
<td>14FP2035</td>
<td>Food Preservation Principles</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP2036</td>
<td>Processing of Food Commodities</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP2037</td>
<td>Technology of Packaging</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP2038</td>
<td>Functional Foods and Nutraceuticals</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP2039</td>
<td>Material Science for Food Engineers</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP2040</td>
<td>Food Industry Waste Management</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP2041</td>
<td>Emerging Technologies in Food Process Engineering</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP2042</td>
<td>Computational Fluid Dynamics Lab</td>
<td>0:0:2</td>
</tr>
<tr>
<td>14FP3001</td>
<td>Separation Processes in Food Engineering</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP3002</td>
<td>Mass Transfer Processes in Food Engineering</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP3003</td>
<td>Technology of Food Flavourants and Colourants</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP3004</td>
<td>Food Plant Layout and Design</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP3005</td>
<td>Instrumental Techniques for Food Quality and Safety</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP3006</td>
<td>Storage Engineering of Grains</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP3007</td>
<td>Food Laws and Safety Regulations</td>
<td>3:0:0</td>
</tr>
</tbody>
</table>
14FP2001 PRINCIPLES OF FOOD PROCESS ENGINEERING

Credits: 3:0:0

Course Objectives
- To enable the students to solve problems in Food Engineering process of value addition and quality improvement.
- To impart knowledge on the principles of Food Process Engineering and its importance for the Food Industry.
- To make the student to understand units and dimensions, ability to solve engineering problems related to food processing, and familiarization with some food processing unit operations.

Course Outcomes
- The students understand the principles in formulating solutions to solve problems in food industry.
- The students understood the importance of Food Process Engineering as one of the major pillars of Food Science and Technology discipline.
- The students acquired the required skills in dealing with units and dimensions, solving problems of Food Process Engineering.

Reference Books

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>14FP3008</td>
<td>Logistics and Distribution Management in Food Industry</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP3009</td>
<td>Food Analysis Lab</td>
<td>0:0:2</td>
</tr>
<tr>
<td>14FP3010</td>
<td>Food Engineering and Transport Processes Lab</td>
<td>0:0:2</td>
</tr>
<tr>
<td>14FP3011</td>
<td>Food Product Technology Lab</td>
<td>0:0:2</td>
</tr>
<tr>
<td>14FP3012</td>
<td>Advances in Dairy, Meat and Fish Processing</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP3013</td>
<td>Advances in Food Microbiology</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP3014</td>
<td>Advances in Processing of Cereals, Pulses and Oil seeds</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP3015</td>
<td>Advances in Processing of Horticulture, Spices and Plantation Products</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP3016</td>
<td>Milling and Bakery Technology</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP3017</td>
<td>Food Industry Waste Management</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP3018</td>
<td>Refrigeration and Cold storage Engineering</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP3019</td>
<td>Advances in Food Process Engineering</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP3020</td>
<td>Engineering Properties of Food</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP3021</td>
<td>Design of Food Processing Equipments</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP3022</td>
<td>Advances in Packaging and Handling of Foods</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP3023</td>
<td>Food Material Science</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP3024</td>
<td>Food Processing and Biotechnology</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP3025</td>
<td>Advances in Processing of Horticulture Products</td>
<td>3:0:0</td>
</tr>
<tr>
<td>14FP3026</td>
<td>Food Analysis and Agro biotechnology Lab</td>
<td>0:0:4</td>
</tr>
</tbody>
</table>

14FP2002 FOOD CHEMISTRY

Credits: 3:0:0

Course Objectives
- To enable the students understand the chemistry and importance of water, carbohydrates, lipids, proteins and vitamins
- To impart knowledge on the methods of manufacture of oils and the methods of determining the quality of oils and fats
- To understand the role of vitamins in human nutrition and the effect of various processing methods in maintaining the vitamin content in foods.

Course Outcomes
- The students understood the importance of various food constituents, and their role in a food.
- The students understood the chemical changes that takes place during food processing
- The students understood to develop a basic idea in new food product development

Reference Books

14FP2003 FLUID MECHANICS AND HEAT TRANSFER LAB

Credits: 0:0:2

Co Requisite: 14CE2003- Mechanics of Fluids

Course Objectives
- To enable the students to understand the means of pressure loss in fluid dynamics
- To enable the students to understand the means of heat losses in food systems

Course Outcomes
- Students would be able to develop systems that minimize pressure losses in flow systems
- Students would be able to judge the efficiency of a system and develop suitable technologies

The faculty conducting the laboratory will prepare a list of 12 experiments and get the approval of HoD/Director and notify it at the beginning of each semester.
14FP2004 FOOD ANALYSIS LAB – 1

Credits: 0:0:2

Co Requisite: 14FP2002-Food Chemistry

Course Objectives
- To train the student to analyse food components
- To make the students aware of the standards of food quality

Course Outcomes
- Students would be able to assess the quality of the food
- Students would be able to develop newer methods of food analysis

The faculty conducting the laboratory will prepare a list of 12 experiments and get the approval of HoD/Director and notify it at the beginning of each semester.

14FP2005 HEAT AND MASS TRANSFER

Credits: 3:0:0

Course Objectives
- To enable the student to understand the basics of fluid mechanics and thermal flow
- To understand the Importance of thermal fluid sciences in processing of food
- To develop processes with better heat efficiency and economics

Course Outcomes
- Learn to design heat exchangers for food processing
- Learn to design cold storage for food preservation
- Learn to Select suitable processing equipment

Reference Books

14FP2006 DAIRY ENGINEERING AND TECHNOLOGY

Credits: 3:0:0

Course Objectives
- To understand about milk, milk processing methodologies
- To provide knowledge about the processing equipments
- To provide technical know-how about the production of milk products.
Course Outcomes
- The students learn the technology of milk and its processing methods.
- The students gain knowledge about the various milk processing equipments.
- The students understand the production of various milk products.

Reference Books

14FP2007 UNIT OPERATIONS IN FOOD PROCESS ENGINEERING –I

Credits: 3:0:0

Prerequisite: 14FP2001 Principles of Food Process Engineering

Course Objectives
- To understand the principle involved in food processing engineering
- To the principle and working of various processing equipments
- To know the methods of product recovery

Course Outcomes
- The students understand the operation of equipment
- The students know various factors affecting food processing equipments
- The students learn to select suitable processing equipment

Reference Books
2. Fellows, P. Food Processing Technology. CRC Press 2009
14FP2008 FRUIT AND VEGETABLE PROCESSING TECHNOLOGY

Credits: 3:0:0

Course Objectives
- To know the status of fruit and vegetable production in India with importance to losses.
- To study the canning of fruits and vegetables and to impart knowledge about the various products.
- To study the various methods of drying of fruits and vegetables.

Course Outcomes
- Students have attained knowledge on various preservation treatments and operations involved in processing.
- Students have attained knowledge on the various preparation of the products and its standard specifications.
- The students are enabled to apply their knowledge on various technological advancements in the field of product development.

Production and composition of Fruits and vegetables in India, Spoilage factors, Post harvest field operations, preservation treatments for freshly harvested fruits and vegetables, Packaging of whole fruits and vegetables for internal and export markets. General methods of preservation of whole fruits/Vegetables and processed fruits and vegetables. Canning of fruit and vegetables, Preparation of products like Jams, Jellies, Marmalades, Pickles, Puree, Ketchup, Sauce, Squashes etc. – FSSAI specifications. Blanching operations, Processing of fruit juices, Concentrates, Fruit Bars and Fruit powders. Clarification of juices, Minimal processing, Dehydration, Reverse osmosis, Aseptic processing - Basic concepts and principles.

Reference Books

14FP2009 UNIT OPERATIONS IN FOOD PROCESS ENGINEERING AND GRAIN PROCESSING LAB

Credits: 0:0:2

Co Requisite: 14FP2007-Unit Operations in Food Process Engineering-I

Course Objectives
- To understand the principle involved in food processing engineering
- To the principle and working of various processing equipments
- To know the methods of product recovery of different equipments

Course Outcomes
- Students can learn the material and energy balance related to the unit operations
- Students can understand the factors affecting unit operations
- Students can select suitable unit operations for a specific purpose

The faculty conducting the laboratory will prepare a list of 12 experiments and get the approval of HoD/Director and notify it at the beginning of each semester.
14FP2010 UNIT OPERATIONS IN FOOD PROCESS ENGINEERING – II

Credits: 3:0:0

Prerequisite: 14FP2001 Principles of Food Process Engineering

Course Objectives
- To understand the role of unit operations in food processing engineering
- To know the working principle of various equipments
- To know the methods of product recovery

Course Outcomes
- Students can learn the material and energy balance related to the unit operations
- Students can understand the factors affecting unit operations
- Students can select suitable unit operations for a specific purpose

Reference Books

14FP2011 REFRIGERATION, AIRCONDITIONING AND COLD STORAGE

Credits: 3:0:0

Prerequisite: 14FP2005 Heat and Mass Transfer

Course Objectives
- To enable the students to understand the various concepts behind refrigeration and air conditioning.
- To enable the students to solve simple problems in refrigeration and air conditioning.
- To enable the students to understand the various concepts behind cold storage construction, design, maintenance, and applications in food industry.

Course Outcomes
- The students are knowledgeable to construct refrigeration and air conditioning.
- The students will be able to solve problems on refrigeration and air conditioning and design cold storage for food applications.
- The students will be able to apply their knowledge on cold storage of perishable products.

Refrigeration – Basic concepts and Psychrometrics, Air conditioning – Cold Storage Design And Construction - Cooling load estimation, prefabricated cold storage systems and mobile refrigeration systems. Freezer Storages - Pre-cooling and pre freezing - Freezer types. Chilling equipment for liquid foods. Secondary refrigerants and direct
expansion techniques in chilling. Chilled foods transport and display cabinets - Chilled foods microbiology, Packaging of Chilled foods - Design considerations for chillers and chilled Storages. Evaporative cooling.

Reference Books

14FP2012 FOOD PACKAGING TECHNOLOGY
Credits: 3:0:0
Course Objectives
- To study about the functions of packaging along with the influence of various factors on food.
- To know about the different packaging materials like cans, bottles, flexible films etc.
- To study about the various methods of packaging and the equipments used for packaging.

Course Outcomes
- Students will attain knowledge about the testing of various packaging materials and also suitability of packaging materials with respect to the products.
- Students understand the designing of various storage structures and theories related to it.
- Students are updated of the recent technological advancements in the field of Food Packaging.

Reference Books

14FP2013 STORAGE ENGINEERING
Credits: 3:0:0
Course Objectives
- To expose the students to the large scale handling and storage mechanism of grains.
- To make the students understand the engineering operations involved in control of physical, chemical and biological spoilage during storage of grains.
To impart knowledge on design of storage structures.

Course Outcomes

- The students have understood the various spoilage factors of grains during storage.
- The students have gained knowledge on the various aspects of storage of grains and storage structures.
- The students can apply their technical know-how in designing and layout of grain storage structures.

Introduction about the importance of storage, Physico-chemical and thermal properties of grains, Effect of moisture content and drying on storage of grains, Grain storage principles, changes occurring during storage, types of storage structures, theory of storage – Rankine and Janssen theories, design of storage structures, Extent of losses during storage, types of pests and insects, their effect on quality of grains and control measures, Controlled and modified atmosphere storage.

Reference Books

14FP2014 ENZYMOLOGY LAB

Credits: 0:0:2

Co Requisite: 14FP2002-Food Chemistry & 14BT2001 Basics of Biochemistry

Course Objectives

- To understand the importance of enzymes in foods.
- To know the application of various enzymes in foods.

Course Outcomes

- The students learn about different enzymes.
- The students apply their knowledge of incorporating enzymes in foods and their actions in foods

The faculty conducting the laboratory will prepare a list of 12 experiments and get the approval of HoD/Director and notify it at the beginning of each semester.

14FP2015 FOOD PRODUCT TECHNOLOGY LAB – I

Credits: 0:0:2

Co Requisite: 14FP2008-Fruit and Vegetable Processing Technology

Course Objectives

- To understand the ingredients needed for preparations of food products.
- To calculate the quantity of ingredients for preparations of food products.

Course Outcomes

- The students are able to list the various ingredients needed for preparations of food products.
- The students are able to calculate the quantity of ingredients for preparations of food products.

The faculty conducting the laboratory will prepare a list of 12 experiments and get the approval of HoD/Director and notify it at the beginning of each semester.
14FP2016 PHYSICAL PROPERTIES OF FOOD MATERIALS

Credits: 3:0:0

Course Objectives

- To study about the different engineering properties of foods.
- To study the methods of determining the quality and properties of different foods.
- To gain knowledge and apply engineering properties in the design of processing, transport and storage equipments.

Course Outcomes

- The students have gained knowledge of engineering properties of food materials.
- The students have gained skill measurement techniques of engineering properties of foods.
- The students have acquired technical know-how on the design of processing, transport and storage structures.

Physical Properties of Foods: Methods of estimation of physical characteristics - Frictional properties-Rheological Properties - Viscosity and Texture measurement techniques-Hardness and brittleness testing - Thermal Properties – concepts and measurement techniques - Aerodynamic and Hydrodynamic Properties- Drag and lift coefficient, terminal velocity and their application in the handling and separation of food materials- Sorption isotherms – Models

Reference Books

14FP2017 SUPPLY CHAIN MANAGEMENT

Credits: 3:0:0

Course Objectives

- To understand the fundamentals of supply chain management
- To learn the importance of supply chain management in Food preservation
- To learn about the opportunities available in the country

Course Outcomes

- The students have gained skills on methods to improve supply chain management
- The students are able to develop newer and cost-effective strategies
- The students are able to develop better quality systems.

Reference Books:

14FP2018 FOOD SAFETY REGULATIONS

Credits: 3:0:0

Course Objectives
- To create awareness about the importance of Food Safety.
- To impart knowledge about the Regulating authorities for food safety world over.
- To provide knowledge on HACCP in food industries.

Course Outcomes
- The students have gained knowledge on importance of food safety.
- The students have acquired sufficient knowledge about the regulations and authorizes for food safety.
- The students have developed their skills in the safety aspects to be implemented in food industries.

Food Regulations

Reference Books:

14FP2019 ENGINEERING PROPERTIES OF FOOD MATERIALS LAB

Credits: 0:0:2

Co Requisite: 14FP2010-Unit Operations in Food Process Engineering – II & 14FP2016- Physical Properties of Food Materials

Course Objectives
- To study about the different engineering properties of foods.
- To study the methods of determining the quality and properties of different foods.
- To gain knowledge and apply engineering properties in the design of processing, transport and storage equipments.

Course Outcomes
- The students have gained knowledge of engineering properties of food materials.
- The students have gained skills measurement techniques of engineering properties of foods.
- The students have acquired technical know-how on the design of processing, transport and storage structures.

The faculty conducting the laboratory will prepare a list of 12 experiments and get the approval of HoD/Director and notify it at the beginning of each semester.
14FP2020 FOOD ENGINEERING AND PACKAGING LAB

Credits: 0:0:2

Co Requisite: 14FP2012- Food Packaging Technology

Course Objectives
- To understand the principle and working of various food engineering operations and machinery.
- To provide knowledge on packaging and packaging materials.

Course Outcomes
- To students are able to operate food processing machinery and find the efficiency.
- The students will get exposure about packaging, packaging materials and packaging methods.

The faculty conducting the laboratory will prepare a list of 12 experiments and get the approval of HoD/Director and notify it at the beginning of each semester.

14FP2021 FOOD PROCESS EQUIPMENT DESIGN

Credits: 3:0:0

Prerequisite: 14FP2007 Unit Operations in Food Process Engineering -I
14FP2010 Unit Operations In Food Process Engineering-II

Course Objectives
- To enable the student to design and develop equipments used in Food Processing operations.
- Identify and discuss critical design of typical processing equipment.
- Understand the relationship between process design and Safety

Course Outcomes
- The students will gain technical know-how about the material requirements and design of various equipments needed in Food industries.
- The students will understand the practical applications of basic design engineering principles.
- The students will understand the content and applications of process flow diagrams, (PFDs) and piping and instrument diagrams (P&IDs).

Materials: Metals and non-metals, design of pressure vessels- Numerical problem and design of pressure vessel.
Storage Vessels: Design of storage vessels – Rectangular Tank with and without stiffeners – shell design.

Reference Books
3. Rajesh Mehta and J. George “Food Safety Regulation Concerns and Trade- The Developing Country Perspective,” Published by Macmillan India Ltd., New Delhi. 2005
14FP2022 FOOD ANALYSIS LAB-II

Credits: 0:0:2

Co Requisite: 14FP2006 Dairy Engineering and Technology

Course Objectives
- To train the student to analyse food components
- To make the students aware of the standards of food quality

Course Outcomes
- Students would be able to assess the quality of the food
- Students would be able to develop newer methods of food analysis

The faculty conducting the laboratory will prepare a list of 12 experiments and get the approval of HoD/Director and notify it at the beginning of each semester.

14FP2023 COMPUTER AIDED FOOD PROCESS EQUIPMENT DESIGN LAB

Credits: 0:0:2

Co Requisite: 14FP2021 - Food Process Equipment Design

Course Objectives
- Design of plants using computing software.
- Simulating process environment virtually.
- Understanding relational database and design specific unit operations.

Course Outcomes
- The students have understood computer aided design principles and practice.
- The students have learnt the effective approaches to building up knowledge about a process through simulation.
- The students have acquired the skills needed to design a chemical plant using ASPEN HYSYS.

The faculty conducting the laboratory will prepare a list of 12 experiments and get the approval of HoD/Director and notify it at the beginning of each semester.

14FP2024 MECHANICAL SYSTEMS FOR FOOD PROCESSING

Credits: 3:0:0

Course Objectives
- To provide knowledge about types of pumps and their applications.
- To learn about types of power transmission elements, steam generators, chillers, refrigeration and material handling systems.
- To enable the students to solve simple problems in mechanical systems.

Course Outcomes
- The students have understood the working principle of pumps and their applications.
- The students have understood the various power transmission elements and working principle of boilers, refrigeration and material handling systems.
- The students have acquired knowledge to solve simple problems in pumps, power transmission systems and refrigeration systems.

Pumping theory- head developed-Types of pumps-Centrifugal pumps- Reciprocating pumps- Rotary gear pumps-vane pumps- and diaphragm pumps-construction- working principles and applications. Mechanical power

Reference Books:

14FP2025 CEREALS AND PULSES TECHNOLOGY
Credits: 3:0:0

Course Objectives
- To create awareness and knowledge about the processing of major cereals like paddy, maize, pulses etc.
- To study the storage and handling techniques of cereals.
- To study about the byproducts obtained during processing along with their uses.

Course Outcomes
- The students have understood the Paddy Processing and Rice milling equipment which will help them for developing entrepreneurial skills.
- The students have developed skills in the milling and processing of pulses, maize.
- The students have learnt the grain storage and handling processes including the spoilage and problems associated with different methods of storage, which will enable them to promote protective measures against rodents and pests.

Paddy processing- Parboiling process-Methods of grain drying- Products and byproducts of paddy processing- Rice milling- Dehusking process-Modern rice mills and their components- Rice Mill yields and loss due to brokens at different stages of milling- Milling of pulses- Traditional milling process- Modern milling process- Machinery and equipment employed- Pulse flour products- Dry milling of maize- wet milling of maize and corn-value added products- Grain storage and handling.

Reference Books

14FP2026 PLANTATION PRODUCTS AND SPICES TECHNOLOGY
Credits: 3:0:0

Course Objectives
- To understand about Coffee, its processing techniques and coffee products.
- To learn the different types of tea, its manufacturing techniques and quality parameters.
To learn Cocoa, its processing and chocolate manufacturing technology.
To know the processing and chemistry of major and minor spices.

Course Outcomes
- The students have understood the processing steps involved for different plantation products and spices.
- The students will apply their knowledge in processing industries related to plantation crops and spices.
- The students will gain skills on identifying the quality aspects of plantation crops and spices.

Reference Books

14FP2027 FOOD ADDITIVES

Credits: 3:0:0

Course Objectives
- To understand the Chemistry of the additives added to food
- To understand the importance of additives in maintaining or improving food quality
- To Know the limits of addition as prescribed by FAO/WHO and PFA
- Develop newer additives with improved safety standards.

Course Outcomes
- The Students acquire knowledge about importance of additives in maintaining or improving food quality.
- The students are able to apply their knowledge on development of various instant premixes by addition of preservatives within the permissible limits.
- The Students understand about the properties, levels of addition and toxicity data of various food additives.

Food additives - definition and classification, food safety levels as per the specifications, safety evaluation of additives – determination of acute and chronic toxicity- NOEL, ADI, LD50 value, PFA regulations, GRAS status. Acidulants, Preservatives ,Emulsifiers and gums, Antioxidants, Humectants, Dough conditioners , flour improvers, Fat substitutes and replacers, Colourants, Flavourants, Flavour enhancers, Nutritional additives, Sweeteners – Natural and synthetic, Chelating agents, antibrowning agents : Types, chemical properties, levels of additions in individual products and toxicity data

Reference Books

14FP2028 FAT AND OIL PROCESSING TECHNOLOGY

Credits: 3:0:0

Course Objectives
- To understand the physical and chemical properties of fats and oils
- To study the extraction and refining processes
- To learn the packaging, quality standards of fats and oils.

Course Outcomes
- The students have understood to appreciate the importance of fats and oils and their manufacture.
- The students can develop technology for manufacture of designer fats.
- The students can develop newer methods of analysis of oils and fats.

Reference books

14FP2029 TECHNOLOGY OF MEAT, POULTRY AND FISH

Credits: 3:0:0

Course Objectives
- To understand about the composition, nutritive value of meat, poultry and fish
- To know about processing technology of meat, poultry and fish
- To learn the technology of meat products and eggs

Course Outcomes
- The student will be able to understand about the composition of meat, poultry and fish,
- The student will have knowledge on the processing of meat, poultry and fish and their by products.
- The students will have knowledge about meat plant sanitation, hygiene and standards.

Reference Books

14FP2030 BAKERY AND CONFECTIONERY TECHNOLOGY

Credits: 3:0:0

Course Objectives
- To provide know how on the machinery and process involved in the baking process
- To understand the various types of sugar and its grades
- To know the confectionery product manufacture

Course Outcomes
- The students have gained knowledge on the ingredients of baking.
- The students have gained knowledge of the process and machinery involved in bakery and confectionery technology.
- The students have acquired experience of entrepreneur skills of bakery

Reference Books

14FP2031 DRYING TECHNOLOGY

Credits: 3:0:0

Course Objectives
- To understand the basic theory of drying and its significance in food systems
- To understand the importance of drying as a method of food processing
- To learn about the relative advantages / disadvantages of each method of drying

Course Outcomes
- The students have understood the theory of drying.
- The students have understood the principle and working of various types of dryers.
- The students are able to apply their knowledge on drying technology in various food industries.

conventional and modified fluidized bed dryer – Pneumatic / Flash dryers - Basic Operation Principle and Applications of Flash Dryers - Design of Flash Dryers - Materials Dried in Flash Dryers.

Reference Books

14FP2032 PROCESS ECONOMICS AND PLANT LAYOUT DESIGN

Credits: 3:0:0

Course Objectives
- To enable the students understand the various concepts of economics of food plant.
- To understand the processes involved in layout design.
- To understand the development and design consideration and cost estimation in food industry.

Course Outcomes
- The students will gain knowledge on the various aspects of economics involved in Food Processing Industry.
- The students will understand the process of food plant layout design.
- The students will be able to apply their knowledge to design projects for setting up a Food Processing Industry.

Technical feasibility survey of Food Industry, process development, Food Process flow sheets – Hygienic food process design - equipment design and specifications – Plant layout – Factors to be considered while deciding the plant layout - Process and Product layout – Project evaluation and Cost estimations – Process profitability Application to a Food Plant - Plant Overheads - Profitability Analysis: Optimization techniques – Linear and Dynamics programming, Optimization strategies.

Reference Books

14FP2033 FOOD ADDITIVES LAB

Credits: 0:0:2

Co Requisite: 14FP2027-Food Additives

Course Objectives
- To understand the Chemistry of the additives added to food
- To understand the importance of additives in maintaining or improving food quality
- To develop newer additives with improved safety standards.
Course Outcomes

- The students acquire knowledge about importance of additives in maintaining or improving food quality.
- The students are able to apply their knowledge on development of various instant premixes by addition of preservatives within the permissible limits.
- The students understand about the properties, levels of addition and toxicity data of various food additives.

The faculty conducting the laboratory will prepare a list of 12 experiments and get the approval of HoD/Director and notify it at the beginning of each semester.

14FP2034 FOOD PRODUCT TECHNOLOGY LAB – II

Credits: 0:0:2

Co Requisite: 14FP2006-Dairy Engineering and Technology & 14FP2026-Plantation Products and Spices Technology

Course Objectives

- To understand the ingredients needed for preparations of food products.
- To calculate the quantity of ingredients for preparations of food products.

Course Outcomes

- The students are able to list the various ingredients needed for preparations of food products.
- The students are able to calculate the quantity of ingredients for preparations of food products.

The faculty conducting the laboratory will prepare a list of 12 experiments and get the approval of HoD/Director and notify it at the beginning of each semester.

14FP2035 FOOD PRESERVATION PRINCIPLES

Credits: 3:0:0

Course Objectives

- To understand the fundamentals of bio molecules
- To impart basic knowledge on the methods of analysis of fats and oils
- To learn about the food borne diseases, food poisoning and food preservation principle

Course Outcomes

- The students gain knowledge on the fundamentals of food constituents.
- The students get skills on various principles of food processing.
- The students acquire knowledge of various preservation techniques.

Reference Books

14FP2036 PROCESSING OF FOOD COMMODITIES

Credits: 3:0:0

Course Objectives
- To impart knowledge on the basics of food processing
- To study various processing methods for various food materials like fruits & vegetables, dairy products, cereals, meat, poultry, fish and bakery products.
- To study various innovative food processing techniques

Course Outcomes
- Students will have a know-how on the various processing technologies involving fruits and vegetables, dairy, cereals, meat, fish, egg and plantation products.
- Students have acquired basic knowledge on microbiology of food products.
- Students will have an overview of the possible arena of entrepreneurial activity related to food products.

Technology of Rice, Pulse milling and Wheat milling-Oil extraction-Methods of manufacture of bread-Fruits and vegetable processing - Preservation treatments-Basics of Canning, Minimal processing and Hurdle technology. Processing of fruit juices. Dairy processing-manufacture of milk and milk products - Meat, poultry and fish processing and their products- Processing of Plantation products -Processing of Tea, Coffee and Cocoa and chocolate Processing of spices-. Pepper, cardamom, ginger, vanilla and turmeric.

Reference Books

14FP2037 TECHNOLOGY OF PACKAGING

Credits: 3:0:0

Course Objectives
- To provide knowledge on packaging and packaging materials.
- To understand the working of various packaging material manufacturing methods.
- To enable the students to understand the interaction of food items with packaging materials and packaging material testing.

Course Outcomes
- The students will get exposure about packaging, packaging materials and packaging methods.
- The students will develop knowledge on manufacturing of packaging materials and testing.
- The students will be familiar about the food distribution chain and sustainable packaging.

Reference Books

14FP2038 FUNCTIONAL FOODS AND NUTRACEUTICALS

Credits: 3:0:0

Course Objectives
- To understand the basics of nutraceuticals and functional foods
- To study the significance of nutraceuticals and their role in disease prevention
- To identify new strategies for marketing of traditionally known nutraceuticals

Course Outcomes
- The students have understood the importance of Functional food for preventive therapy.
- The students have learnt methods for extraction of nutraceuticals
- The students have learnt methods for identification nutraceutically significant molecules.

Teleology and Organization models for nutraceuticals – Classification of Nutraceuticals - Flavonoids And Carotenoids As Antioxidants and anti cancer agents- Omega-3 Fatty Acids and Cardiac Arrhythmias, Glycemic control and rheumatoid arthritis – CLA as a nutraceutical – Mechanism - Potential health benefits and adverse effects of CLA – Lycopene, Garlic, Olive oil, and Nuts as functional Foods – Probiotics and Prebiotics – Herbs as functional Foods - Kinetic modelling of chemical reactions – Accelerated shelf life testing – Regulatory and marketing issues for nutraceuticals

Reference Books

14FP2039 MATERIAL SCIENCE FOR FOOD ENGINEERS

Credits 3:0:0

Course Objectives
- To enable students understand the basics of material science
- To enable them understand the importance of it in food equipment design
- To enable students understand the current trends in developing food grade materials

Course Outcomes
- The Students will attain knowledge about designing of food grade equipments
- The Students will be able to develop newer materials for food use
- The Students will be able to develop cost-effective methods of developing food-grade materials

Reference Books

14FP2040 FOOD INDUSTRY WASTE MANAGEMENT

Credits: 3:0:0

Course Objectives
- To enable the student understand the extent of wastes produced in a food industry and its environmental effects
- To enable the student understand the nature of food wastes and methods of treatment
- To enable the student know the importance of waste utilization in Food industries

Course Outcomes
- Students will attain knowledge about the methods of managing food wastes
- Students will gain knowledge on the methods for utilization of food wastes.
- Students will gain knowledge on getting value-added products from wastes

Legislations pertaining to Food waste disposal - Key drivers for waste management and co-product recovery in Food Processing – Strategies to be followed for optimizing manufacturing to minimize wastes – Key issues and technologies for Food waste separation and Co-product recovery – Methods of solid and liquid waste treatment – Impact of water footprint and rehabilitation of Food industry waste water - Waste management in specific food industries – Methods to obtain value-added products from wastes.

Reference Books

14FP2041 EMERGING TECHNOLOGIES IN FOOD PROCESS ENGINEERING

Credits: 3:0:0

Course Objectives
- To study about the concepts and principles of various techniques such as High Intensity Pulse Techniques, Light Pulses and emerging aspects in food process engineering.
To learn about the equipments used and working principle for the emerging aspects in food process engineering.

To know the various applications of the new technologies in food process engineering.

Course Outcomes

- Students are updated of the recent technological advancements in the field of Food Technology.
- Students are appraised of the alternate technologies in Thermal Processing of foods.
- The students are able to apply their knowledge on various technological advancements in the field of Food Technology.

Reference Books

1. Shafiu Rahman. 2007. Handbook of food preservation. Published by Taylor & Francis Group, LLC.

14FP2042 COMPUTATIONAL FLUID DYNAMICS LAB

Credits: 0:0:2

Course Objectives

- To make students to understand the flow and heat transfer analysis in engineering problems of practical interest.
- To enable students to study different fluid flows and developing a better intuition of fluid mechanics.
- To enable students to understand the process of developing a geometrical model of the flow, applying appropriate boundary conditions, specifying solution parameters, and visualizing the results.

Course Outcomes

- The students get technical knowledge in the actual implementation of CFD methods. The emphasis on the use of CFD as a virtual fluid laboratory.
- The students understand the process of developing a geometrical model of the flow, applying appropriate boundary conditions, specifying solution parameters, and visualizing the results.
- The students have an appreciation for the factors limiting the accuracy of CFD solutions.

The faculty conducting the laboratory will prepare a list of 12 experiments and get the approval of HoD/Director and notify it at the beginning of each semester.
14FP3001 SEPARATION PROCESSES IN FOOD ENGINEERING

Credits: 3:0:0

Course Objectives:
- To enable the students understand the concepts of separation of solids and liquids in food engineering application.
- To understand the principle behind various separation process equipments.
- To provide knowledge to the students about the working and application of various separation equipments.

Course Outcomes:
- Students will be able to apply their knowledge on separation techniques.
- Students will be able to select suitable separation equipments needed for food industries.
- Students will be able to operate various separation equipments.

Basic principles of fluid flow-devices to measure pressures-types of flow-simple mass balance - continuity equation-pressure drop due to friction-flow in packed beds; Mechanical separation-screens – sedimentation- Filtration-equipments for filtration and sedimentation; Centrifugal separation- Basic equations. Different types of centrifuges - advantages and applications; Filtration by membrane systems- Reverse Osmosis (RO), Nano filtration (NF), Diafiltration, Ultra filtration (UF) and Micro filtration (MF), Membrane Configuration -, membrane materials- Adsorption and Diffusion-Basics of absorption- Diffusion of gases in liquid and solid foods, Moisture transfer in foods, Diffusion in porous foods, Inter-phase moisture transport. Diffusion of aroma components

Reference Books

14FP3002 MASS TRANSFER PROCESSES IN FOOD ENGINEERING

Credit 3:0:0

Course Objectives:
- To understand the need of mass transfer process in food industries
- To understand the principle behind various mass transfer process
- To know the operation of various mass transfer equipments

Course Outcomes:
- The students can understand the application of various mass transfer processes in food industries
- The student can select suitable mass transfer operation for a specific need
- The students can design various mass transfer equipments for food processing equipments

Text Books:

14FP3003 TECHNOLOGY OF FOOD FLAVOURANTS AND COLOURANTS

Credits: 3:0:0

Course Objectives:
- To enable the student to understand the basics of foods flavours and colours
- To enable the student to learn the Chemistry & technology of natural flavours, pigments

Course Outcomes:
- To develop methods for stabilization of natural colorants
- To develop aroma chemicals
- To develop techniques for analysis of colorants and aroma chemicals

Reference Books

14FP3004 FOOD PLANT LAYOUT AND DESIGN

Credits: 3:0:0

Course Objectives:
- To enable the student to understand the various factors involved in the site selection and design of food plant layout.
- To enable the students learn the concept of preparing cost estimate and economics.
- To understand the importance HACCP and food safety laws governing food industries.
Course Outcomes:

On completion of the course, and exposed to

- The student will gain knowledge to design and setting up of new food processing plant as Entrepreneur and/or consultant.
- The student can prepare cost estimate and economic analysis of food industry.
- The student can implement the food safety standards in food industries.

Reference Books:

14FP3005 INSTRUMENTAL TECHNIQUES FOR FOOD QUALITY AND SAFETY

Credit: 3:0:0

Course Objectives

- To understand the importance of analytical techniques for quality control
- To know the appropriate analytical method for specific purpose
- To apply the principles of instrumentation in food processing industries

Course Outcomes

- The students can understand the working principle of various instruments
- The students can do various qualitative and quantitative analyses
- The knowledge gained can be used for food quality control

Reference Books:

2. Yolando Pico, Chemical analysis of food techniques and applications, 2012 Elsevier publications

2014 | Department of Food Processing and Engineering
14FP3006 STORAGE ENGINEERING OF GRAINS

Credits : 3:0:0

Course Objectives
- To enable the students to understand the various concepts of food storage, post harvest loss and prevention of such losses.
- To impart knowledge on the design aspects of storage structures
- To provide knowledge on modern storage methods

Course Outcomes
- The students will be able to know all the operation in food storage and post harvest handling.
- The food loss prevention can help to meet the food demand.
- The quality of the products can be maintained and made available during off season.

Reference Books

14FP3007 FOOD LAWS AND SAFETY REGULATIONS

Credit: 3:0:0

Course Objectives
- To enable the students to understand the basics of food safety and regulations governing the same, the world over.
- To make the students to understand the role of individual personnel of the regulatory authority
- To enable to understand food safety management systems

Course Outcomes
- Students will be able to develop Protocols based on GMP for Food Processing Industries
- Develop new innovative norms and Ensure implementation of adequate safety regulations and control.
- Students will be able to run risk analysis based upon data and statistics obtained from production lines.

Structure, organization and practical operation of international intergovernmental food regulation bodies such as World Trade order - Codex Alimentarius -World Health Organization. Regulatory affairs - International Food Regulatory Affairs - Risk Analysis- Food and Health- Farm to Fork Regulation of the Food Chain- Regulating authority for food safety in India and its role - Food labelling –Standards at the world level for processed food, irradiated foods, genetically modified foods – EU & US approach to nutritional labelling and Health claims. General concepts of HACCP and ISO 22000. Safety aspects of drinking water and Indian regulations for bottled water.

Reference Books
3. Rajesh Mehta and J. George - Food Safety Regulation Concerns and Trade- The Developing Country Perspective. Published by Macmillan India Ltd., New Delhi. 2005

14FP3008 LOGISTICS AND DISTRIBUTION MANAGEMENT IN FOOD INDUSTRY

Credits: 3:0:0

Course Objectives
- To understand the fundamentals of supply chain management
- To learn the importance of supply chain management in Food preservation
- To learn about the opportunities available in the country

Course Outcomes
- Will be able to develop skills on methods to improve supply chain management
- Will be able to develop newer and cost-effective strategies for logistics
- Will be able to help the consumer to get quality food.

Reference Books

14FP3009 FOOD ANALYSIS LAB

Credits: 0:0:2

Course Objectives
- To train the student to analyse food components
- To make the students aware of the standards of food quality

Course Outcomes
- Students would be able to assess the quality of the food
- Students would be able to develop newer methods of food analysis

The faculty conducting the laboratory will prepare a list of 12 experiments and get the approval of HoD/Director and notify it at the beginning of each semester.
14FP3010 FOOD ENGINEERING AND TRANSPORT PROCESSES LAB

Credits: 0:0:2

Course Objectives
- To enable the students to understand the principle and operation of food machinery.
- To enable the students to understand the means of pressure loss in fluid dynamics
- To enable the students to understand the means of heat losses in food systems

Course Outcomes
- Students would be able to apply the fundamental knowledge of operation of machinery and evaluate the performance.
- Students would be able to develop systems that minimize pressure losses in flow systems
- Students would be able to judge the efficiency of a system and develop suitable technologies

The faculty conducting the laboratory will prepare a list of 12 experiments and get the approval of HoD/Director and notify it at the beginning of each semester.

14FP3011 FOOD PRODUCT TECHNOLOGY LAB

Credits: 0:0:2

Course Objectives
- To understand the ingredients needed for preparations of food products.
- To calculate the quantity of ingredients for preparations of food products.

Course Outcomes
- The students are able to list the various ingredients needed for preparations of food products.
- The students are able to calculate the quantity of ingredients for preparations of food products.

The faculty conducting the laboratory will prepare a list of 12 experiments and get the approval of HoD/Director and notify it at the beginning of each semester.

14FP3012 ADVANCES IN DAIRY, MEAT AND FISH PROCESSING

Credits: 3:0:0

Course Objectives
- To understand about the composition, nutritive value of meat, poultry and fish
- To know about processing technology of meat, poultry and fish
- To learn the value addition and packaging of meat, fish and poultry products

Course Outcomes
- The student will be able to understand to process meat, poultry and fish.
- The students will be able to learn hygienic and mechanised processing.
- The students will be able to prepare various value added products.

Reference Books

14FP3013 ADVANCES IN FOOD MICROBIOLOGY

Credits: 3:0:0

Course Objectives
To enable the student to understand:
- The interaction between food and microbes
- The uses of microbes in the development of food products
- Importance of microbiology in relation to sanitation.

Course Outcomes
On completion of the course, the student will gain knowledge and exposed to
- Various microorganisms involved in food and food product spoilage
- The multifarious role in different types of food fermentations
- Preservation techniques and control measures employed in the promotion and production of microbiologically safe food

Food and microorganisms: factors affecting growth of microorganisms - food preservation and spoilage food – thermal and non thermal mode of preservation – Microbiology of various types of foods – Meat, fish, poultry, dairy products, fruits and vegetables, cereals and pulses, enteral nutrient solution – Indicators of food quality and safety– HACCP and food safety- food and enzyme produced by microorganism -Food borne diseases – Gastroenteritis, Staphylococcal infections, Botulism, Listeriosis, Salmonellosis, Shigellosis – Mycotoxins

Text Books

14FP3014 ADVANCES IN PROCESSING OF CEREALS, PULSES AND OIL SEEDS

Credits: 3:0:0

Course Objectives
- To understand the structure and composition of cereals and pulses.
- To know the techniques involved in milling of cereals and pulses.
- To understand the extraction and refining of oil from oil seeds.

Course Outcomes
On completion of the course, the student will gain knowledge.
• Various techniques and equipments used to process cereals and pulses.
• Value added products developed from cereals and pulses.
• Different storage structures and protection of stored grains.

Structure, composition and quality characteristics of cereals and pulses- Machinery used for milling cereals and pulses-Parboiling of rice – Processing of maize - Nixtamalisation – Processing of Pulses - Products and by products of cereals and pulses-Extraction and refining of oil from oil seed-Techniques involved in milling and drying of cereals and pulses- Quality gradation in rice, corn, and pulses.

Reference Books

14FP3015 ADVANCES IN PROCESSING OF HORTICULTURE, SPICES AND PLANTATION PRODUCTS

Credit: 3:0:0

Course Objectives
• To enable the student to know about post harvest technology of fruits and vegetables.
• To provide knowledge on processing & preservation techniques of fruits and vegetables
• To provide knowledge on processing plantation and spice crops.

Course Outcomes
• The students acquire knowledge on fruit and vegetable processing.
• The students apply their knowledge of processing methods in food industries
• Students will be able to understand the processing steps involved for different plantation products and spices.

Importance of post harvest technology of fruits and vegetables -post harvest handling- Physiology -Spoilage - Principles and methods of preservation - Canning -Minimal processing -Hurdle technology - Quick freezing preservation- Drying and dehydration methods -Osmotic dehydration- Foam mat drying –Freeze drying - Intermediate moisture foods –Sensory evaluation of fruits, vegetables and their products.

Reference Books

14FP3016 MILLING AND BAKERY TECHNOLOGY

Credit: 3:0:0

Course objectives

To enable the students to understand

- Quality tests for wheat
- Importance of wheat quality on the quality of the products
- Milling and its importance in product manufacture

Course outcomes

- The students would be able to use the knowledge in developing new products
- The students would be able to use suitable machinery for minimising / altering the quality of wheat during milling
- The students would be able to develop newer standards for baked products

Reference Books

14FP3017 FOOD INDUSTRY WASTE MANAGEMENT

Credits : 3:0:0

Course Objectives

- To enable the student understand the extent of wastes produced in a food industry and its environmental effects
- To enable the student understand the nature of food wastes and methods of treatment
- To enable the student know the importance of waste utilization in Food industries

Course Outcomes

- Students will attain knowledge about the methods of managing food wastes
- Students will gain knowledge on the methods for utilization of food wastes.
- Students will gain knowledge on getting value-added products from wastes

Legislations pertaining to Food waste disposal - Key drivers for waste management and co-product recovery in Food Processing – Strategies to be followed for optimizing manufacturing to minimize wastes – Key issues and technologies for Food waste separation and Co-product recovery – Methods of solid and liquid waste treatment –
Impact of water footprint and rehabilitation of Food industry waste water - Waste management in specific food industries – Methods to obtain value-added products from wastes.

Reference Books

14FP3018 REFRIGERATION AND COLD STORAGE ENGINEERING

Course Objectives

- To enable the students to understand the various concepts behind refrigeration and storage construction.
- To study the various refrigeration systems.
- To understand the shelf life enhancement under refrigerated condition.

Course Outcomes

- The students will be able to apply their knowledge on cold storage of perishable products.
- The students will be able to design refrigeration and cold storage systems.
- The students will be able to understand the controlling of microbial activity and maintain freshness of the products.

Reference Books

14FP3019 ADVANCES IN FOOD PROCESS ENGINEERING

Course Objectives

- To enable the students to study & understand the various preservation methods foods.
- To enable the student to understand the emerging technologies applied to food processing.
- To strategize the applications in a wide range of food systems.
Course Outcomes
- The students will be able to conserve and minimize the losses in food produce.
- The students will be able to apply the know how in maintaining food security.
- The students will be able to develop newer technologies for food preservation.

Reference Books

14FP3020 ENGINEERING PROPERTIES OF FOOD

Credits: 3:0:0

Course Objectives
- To learn the Engineering properties food and related biomaterials
- To understand the importance in developing new products
- To understand the significance of engineering properties in deciding the sequence of unit operations during processing, handling and storage.

Course Outcomes
- The students will understand the science and engineering concepts for characterizing the thermo-physical behaviour of foods and related biomaterials.
- The students will know the basic principles needed to select and operate instruments and equipments.
- The students will know to design and develop newer and cost effective technologies.

Mechanical properties of foods: compression and shear, deformation testing ,non-destructive methods. Mechanical damage to fruits and vegetables, grains and seeds: failure criteria, external force during handling, detection and evaluation damage. Rheological properties of liquid foods - measurement and applications. Textural Properties: Instruments for measurement of consistency, hardness, firmness, brittleness - Dielectric properties- loss factor, dielectric constant - Gas exchange properties of fruits and vegetables: respiration and fermentation, gas diffusion and applications. Electromagnetic properties- Non destructive methods of testing - optical instruments, colour and colour spaces, NIR spectroscopy.

Reference Books
14FP3021 DESIGN OF FOOD PROCESSING EQUIPMENTS

Credit 3:0:0

Course Objectives
- To know the importance of process equipment design in processing industries.
- To know the factors influencing the process equipment design
- To have knowledge about the materials of construction of the process equipments

Course Outcomes
- The students can design the process equipment for food processing
- The students can calculate the capital cost for food process plant
- The students can calculate the cost of production of the product

Reference Books

14FP3022 ADVANCES IN PACKAGING AND HANDLING OF FOODS

Credit 3:0:0

Course Objectives
- To study about the functions of packaging along with the influence of various factors on food.
- To know about the different packaging materials like cans, bottles, flexible films etc.
- To study about the various methods of packaging and the equipments used for packaging.

Course Outcomes
- Students will attain knowledge about the testing of various packaging materials and also suitability of packaging materials with respect to the products.
- Students understand the designing of various storage structures and theories related to it.
- Students are updated of the recent technological advancements in the field of Food Packaging.

Reference Books

14FP3023 FOOD MATERIAL SCIENCE

Credits: 3:0:0

Course Objectives
- To enable students understand the importance of food polymers
- To make the students understand the interaction of food constituents in maintaining the texture and structure of a food
- To enable the students understand the effect of various methods of processing on the structure and texture of food materials

Course Outcomes
Students would be able
- To develop new products which are nutritional and cost effective
- To predict their behaviour during storage
- To develop cheaper sources of raw materials for a product

Reference Books

14FP3024 FOOD PROCESSING AND BIOTECHNOLOGY

Credit 3:0:0

Course Objectives
- To provide knowledge about the chemistry and microbial aspects of food.
- To teach the various processing methods of foods.
• To equip knowledge with the various equipments for processing of foods.

Course Outcomes
• The student will gain knowledge about the chemistry and microbial aspects of food.
• The student will have the know-how of various processing methods of foods and the related equipments for processing of foods.

Food Chemistry- Constituent of food – contribution to texture, flavour and organoleptic properties of food; food additives – intentional and non-intentional and their functions; enzymes in food processing. Food Microbiology - Sources and activity of microorganisms associated with food; food fermentation; food chemicals; food borne diseases – infections and intoxications, food spoilage – causes. Food Processing-Raw material characteristics; cleaning, sorting and grading of foods; physical conversion operations – mixing, emulsification, extraction, filtration, centrifugation, membrane separation, crystallization, heat processing. Food Preservation- Use of high temperatures – sterilization, pasteurization, blanching, aseptic canning; frozen storage – freezing curve characteristics. Factors affecting quality of frozen foods; irradiation preservation of foods. Manufacture of Food Products- Bread and baked goods, dairy products – milk processing, cheese, butter, ice-cream, vegetable and fruit products; edible oils and fats; meat, poultry and fish products; confectionery, beverages.

Reference Books

14FP3025 ADVANCES IN PROCESSING OF HORTICULTURE PRODUCTS

Credit: 3:0:0

Course Objectives:
• To enable the student to know about post harvest technology of fruits and vegetables.
• To provide knowledge on processing & preservation techniques of fruits and vegetables
• To make the students acquire knowledge on fruit and vegetable processing

Course Outcomes:
• The students would be able to develop skills on various preservation techniques.
• The students would apply their knowledge in developing newer and cost-effective strategies of food preservation
• The students would be able to develop foods that are wholesome and safe

Reference Books

2014 | Department of Food Processing and Engineering

14FP3026 FOOD ANALYSIS AND AGRO BIOTECHNOLOGY LAB

Credits : 0:0:4

Course Objectives
- To understand about the analysis of food products
- To know about the standards of analysis.
- To learn the biotechnology aspects of foods

Course Outcomes
- The student will be able to understand the analysis methods of food products.
- The students will be able to apply their knowledge in research centres.
- The students will be able to prepare standards for analytical methods.

The faculty conducting the laboratory will prepare a list of 12 experiments and get the approval of HoD/Director and notify it at the beginning of each semester.